Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

Initiatives and options for utilizing the dreaded weeds lantana (Lantana camara), parthenium (*Parthenium hysterophorus*) and salvinia (*Salviniamolesta*)

by

S. A. Abbasi, D. Banupriya, Channagam Khamarangand Tasneem Abbasi*

Centre for Pollution Control & Environmental Engineering Pondicherry University, Chinakalapet Puducherry 605 014, India

Abstract

Lantana (*Lantana camara*), parthenium (*Parthenium hysterophorus*), and salvinia (*Salviniamolesta*) are three of the most dominant and dreaded of the weeds that have invaded and colonized tropical/sub-tripical regions of the world, including India. Whereas lantana and parthenium are terrestrial, salvinia is aquatic. The combined impact of the infestation of land and water-bodies by these weeds has been catastrophic. This paper reviews the initiatives taken so far in finding ways and means of utilizing these weeds as a possible means of controlling their growth, and the viability of the various options.

Keywords: Lantana, parthenium, salvinia, weeds, utilization, medicinals, biofuels

1. Introduction

Lantana (*Lantana camara*), parthenium (*Parthenium hysterophorus*) and salvinia (*Salviniamolesta*) are among the world's most invasive and colonizing of weeds. Of these, lantana and parthenium are exclusively terrestrial (Figures 1 and 2) while salvinia is purely aquatic (Figure 3). Each of these weeds has invaded large areas of landmass or water-bodies in the world's tropical and sub-tropical regions. They also happen to be three of the most commonly encountered weeds in India (Abbasi and Nipaney 1986; 1991; 1993; 1994; Abbasi *et al.*, 1990; 1992a; 1992b; Hussian *et al.*, 2015; 2016a; 2017a; 2018). All the three are very hardy, with exceptionally high rates of reproduction and growth. All are also allelopathic — discouraging other vegetation. These attributes, together, make them exceedingly dominant, hence dreaded, of the plant species.

In this paper we have reviewed the attempts made so far to utilize these weeds.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

2. Initiatives to utilize lantana

The studies are summarized in Table 1. It may be seen that attempts have been made to utilize lantana as a source of medicines due to its antoxidant, cytotoxic, antidiarrheal, anticancer, antibacterial, antihelmintic, antiinflammation, and antiobesity activities. It has also been explored as a source of activated carbon, general pesticides, biosorbent, mosquito repellant, biofuel, anticorrosion agent, and a diesel additive. Several authors have also explored its use in biomimetic synthesis of gold, silver, and platinum nanoparticles. Additionally its potential in phytoextraction, phtoremediation, pollutant absorption, heat transfer, and extraction of chemicals such as oleanolic acid has been explored. Attempts have also been made to generate vermicompost/compost from lantana.

Figure 1: Attractive flowers of lantana (top left and right), and scenes of lantana infestation.

However till date no report exists on any of these options having shown potential for economically viable utilization of lantana on a large scale.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Figure 2: Close up of parthenium (top, left) and typical examples of land areas colonized by parthenium.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Figure 3: An adult salvinia plant (top, left) and examples of how salvinia covers water bodies so completely that water goes out of sight.

3. Attempts at utilizing parthenium

The state-of-the art of parthenium utilization is summarized in Table 2.

Parthenium has been used in the production of cellubse, biodegradable poly (3-hydroxybutyrate) or PHB, bioethanol, heat transfer biofluids, biochar, mushrooms, vermicompost, and nanoparticles. The fungus *C.geniculata* growing on it has been tested for plant growth promoting ability. It has been explored as an adsorbent and an antifungal, agent, and as antimycobacterial and an immune-modulator. It has also been tested as a diagnostic marker, and for its antiplasmodial, cytotoxic, and antoxidant activity.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Additionally parthenium has been tested for its potential in phytoremediation and air pollution marking.

But, much like the case of lantana, none of the abovementioned attempts have shown promise of economic viability, and no process exists with which parthenium is being utilized on a large scale.

4. Attempts at the utilization of salvinia

Salvinia being an aquatic plant, that too a free-floating species that requires no soil, has been extensively explored for wastewater treatment/phytoremediation (Table 3). The wastewaters, of which treatment has been attempted using salvinia, include the effluents from coal mines, fish farms, paper mills, palm oil, textile mills, prawn hatcheries, tanneries, and general aquacultural facilities. It has been also explored extensively for removing metals, including non-essential heavy metals cadmium and mercury, from polluted waters.

Abbasi and coworkers have other attempts to benefit from salvinia being a hardy, free floating species, is in exploring it to absorb oil from water. A third avenue of utilization of salvinia, which is not open to lantana and parthenium due to their mammalian toxicity, is possible use as feed. Salvinia had shown some success as feed supplement for duck, fish and ruminants.

It can be said that the deployment of salvinia in wastewater treatment is the only option that has so far been explored for the utilization of any of the three weeds on a large scale. But this option will not contribute to the disposal of salvinia because it does not *consume* salvinia. Once the salvinia plants being used in wastewater treatment systems die, or have to be harvested to prevent overgrowth, they will have to be disposed.

In other words no economically viable option exists as of now with which sizable quantities of any of these three weeds are being consumed.

Summary and conclusion

The reported attempts for the utilization of the terrestrial weeds Lantana (*Lantana camara*), parthenium (*Parthenium hysterophorus*) and free-floating aquatic weed salvinia (*Salviniamolesta*), have been surveyed catalogued, summarized, and reviewed. It is seen that all the three weeds have been explored for source of medicinals, as biofuel, as a source of other useful chemicals, and in nanoparticle synthesis. Latana and parthenium have also been used as pest repellants, pesticides, and in activated carbon production. On the other hand salvinia has

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

shown much promise as a bioagent for wastewater treatment. It has also been used as a feed-supplement for fish, duck, and mammals. But except for the use of salvinia in sewage treatment, no other option for the utilization of any of the three weeds has been tested on a commercial scale. Even the utilization of salvinia in wastewater treatment does not provide any avenue for the consumption of salvinia as the problem of disposing the spent/harvested weed still remains.

Other uses for which salvinia has been tested are similar to the ones attempted for lantana and ipomoea: source of medicines (especially those with antoxident, antimicrobial, and cytotoxic ability), source of other useful chemicals such as lipids, harmones, and phenolic compounds; source of biofuels, explored the use of salvinia in treating domestic sewage in life-size large-scale units based on their SHEFROL® bioreactor technology (Ponni, 2012; Bhat, 2016; Bhat *et al.*, 2016).

Acknowledgement

SAA thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for the Emeritus Scientist grant (21(1034)/16/EMR-II).

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Table1: A gist of attempts at utilizing lantana (*Lantana camara*)

Double-Blind Peer Reviewed Refereed Open Access International Journal - I's Directories of Publishing Opportunities, U.S.A

S.no	Type of use	Plant component used	Type of experiment	Key findings	Reference
1	Phytochemical, antioxidant and cytotoxic potential	Leaf Leaf and root	The ethyl acetate extract of <i>L.camara</i> was investigated for its antioxidant properties by diphenyl-2-picryl-hydrazyl (DPPH) method. Seven fractions were investigated for their antioxidant properties and total phenolic content. Assessment of antioxidant activities of ethanolic extractsof L.camara and L. <i>montevidensis</i> .	Antioxidant activity of extract of L.camara leaves is directly proportional with the total phenolic content of the extract. (i) The ethanolic extracts of leaves exhibited more antioxidant activity than the root extracts. (ii) L. camara and L. montevidensis could be potentially usedfor the	Suryati, 2016 Sousa <i>et al.</i> , 2015
		Leaf	Assessment of antimicrobial activity and phytochemical screening of L. camara using methanol extract. The essential oil of flowers (FLCO) and leaves (LLCO) of L.camara were obtained by hydrodistillation, and analyzed by GC/MS.	treatment of several diseases due to its ability to act as an antioxidant. L.camara extracts showed more antimicrobial activity compared to kanamycinagainst P. auroginosa. (i) Both the oils exhibited antimicrobial activity against B. cereus and B.subtillus. (ii) Both the oils showed moderate antioxidant activity and this effect were	Patacsil et al., 2014
		Flowers and leaf	Antimicrobial activities of methanol, chloroform, acetone, petroleum ether and hexane extracts of <i>L</i> . camara seed was investigated by using agar well diffusion method. Their activity was tested against four human pathogenic bacteria.	increased by increasing their concentrations. (i) Methanolic extract of L.camarashowed maximum inhibition against S. aureus, P.aeruginosa and E. coli. (ii) It had no inhibitory effect against P. vulgaris.	El Baroty et al., 2014
		Seeds	Ethanol, methanol, ethyl acetate and water extracts were prepared from dry leaf powder and fresh fruits (both unripe and ripe fruits) to find out its antioxidant activity. Total phenolic, flavonoid content, antioxidant and free radical scavenging activities of L. camara were determined using methanol extracts. Assessment of antioxidant, antimicrobial and antifungal activities of	All four extracts of leaf, fruits showed considerable antioxidant effect. L. camara extracts showed a strong correlation between its phenolic content and their antioxidant activities.	Amutha, 2014

International Journal of Engineering and Scientific Research http://www.esrjournal.com Email: esrjeditor@gmail.com

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

Leaf, unripe and ripe fruits	methanol, ethanol and water extracts of L. camara. Assessment of antioxidant activity of L. camara by Soxhlet	L. camara extracts were proved to be effective against selected bacterial and fungal strains.	Layavarjitha and Kadamban, 2014
Leaf	extraction method using ethanol as a solvent. Four extraction solvents including 100% and 80% methanol, ethanol coupled with three extraction techniques (stirring, microwave-assisted stirring and ultrasonic-assisted stirring) were employed to access the antioxidant and antimicrobial activity of <i>L</i> . camara Extraction of bioactive compound from <i>L</i> . camara by High-performance liquid chromatography (HPLC) to test its antimicrobial activity. Chemical constituents representing 97.5% of the essential oil of <i>L</i> .	L.camara showed 19% antioxidant activity. Antioxidant and antimicrobial agents from <i>L</i> camara can be used for nutraceutical and therapeutic applications.	Kumar et al., 2014 Naz and Bano, 2013
Not stated Flowers	camara were identified by GC-MS analysis. Diphenyl-2-picryl-hydrazyl (DPPH) radical, reducing power and nitric oxide radical scavenging assays were carried out to evaluate the antioxidant potential of the methanol, chloroform, hot water and diethyl ether extracts of the roots of <i>L.camara</i> . Different extraction solvents (80% methanol, 80% ethanol, absolute methanol and absolute ethanol) were assessed for its antioxidant activity of <i>L.camara</i> . Assessment of phytochemical characterization and antioxidant activity of <i>L.camara</i> and <i>L. montevidensis</i> .	The study showed antimicrobial activity against <i>E. coli, P. aeruginosa, B. subtilis</i> and <i>E. fecalis</i> . Essential oil of <i>L. camara</i> showed antibacterial activities against <i>S. aureus</i> and <i>E. coli</i> . Methanol extracts of <i>L.camara</i> was found to be the most effective compared to other extracts.	Khan <i>et al.</i> , 2013 Manzoor <i>et al.</i> , 2013
Not stated		L. camara proved to be a rich source of natural antioxidants.	Pradeep et al., 2013
Not stated		Both plantsshowed free radical scavenging activity and can be an important source of antioxidant.	Unnithan et al., 2013
Root			Remya et al., 2013

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

		Leaf and flower			Anwar et al., 2013 Sousa et al., 2013
2	Antidiarrheal activity	Stem	Assessment of antidiarrheal activity of the aqueous stem extract of <i>L. camara</i> in mice.	L.camara, thus provide the scientific basis for the treatment of diarrhea.	Tadesse et al., 2017
3	Adsorptive removal of water pollutants	Leaves and stem	L. camara were used to prepare activated carbon by chemical activation method and its lead adoptions potentials were studied.	This is a pioneer study were <i>L.camara</i> have been used as a precursor for activated carbon and can be used for adsorptive removal of pollutants.	Saini <i>et al.</i> , 2017
4	Anticancer agents	Leaf Not stated Not stated	Assessment of anticancer activity of <i>L.camara</i> using methanol extracts. Identification of a natural anticancer agent from <i>L. camara</i> . Minor compounds of L. camara were prepared semi-synthetically in single step by reducing lantadenes A and B under microwave irradiation. Antitumor pentacyclic triterpenoids, lantadene A and B were isolated from L. camara.	L. camara showed anticancer potential against HeLa cervixs cancer cells. L. camara extract can be used as an anti-breast cancer drug. (i) Minor compounds showed selective cytotoxicity against cancer cells. (ii) Lantadenes A and B have the potential to be developed as anticancer agents. These compounds showed marked cytotoxicity in micromolar range.	Arbiastutie et al., 2017 Han et al., 2015 Kumar et al., 2013
5	Feedstock for combustion process	Stem	L. camara has the potential to be used as a feedstock to generate electricity.	The activation energy calculated using the model free methods and the mean values were105.83, 193.6, 184 and 197.8 kJ/mol.	Havilah et al., 2016

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

6	Pesticides	Whole plant	Assessment of L. camaraextractsas seed soaking treatment against reniform nematode infesting cowpea.	Cowpea plants were better and reniform nematode, reproduction and	Patil et al., 2016
			Ų .	populations were reduced in all the treatments compared to control.	
				•	
			Fumigant toxicity of essential oil extracted by <i>L. camara</i> was tested against almond moth.	L. camara proved to be an effective pesticide in early/late egg stage, larva	
		Leaves	against amond mon.	and adult stage of almond moth.	Gotyal et al., 2016
				Significant (P≤0.05) reduction in dry	
			Powdered dry leaves of L. camara were used to test their allelopathy effect against root knot nematode.	weight of both <i>C. olitorius</i> and <i>E. colonum</i> was obtained by using leaf	
			effect against root knot hematode.	residues in comparison to unwedded	
		Leaf		control.	EL-Nagdi et al., 2016
				L. camara extracts proved to be the most active and exhibited 80%	
			L.camara extracts were tested for their nematicidal activities against	mortality compared to standard	
			root knot nematode.	furadan.	
		Leaf and stem		L. camara is found to possess larvicidal potency against A. salina.	Begum et al., 2015
		Lear and stem	Aqueous ethanol extracts (3:1) of L. camara were studied for its		
			larvicidal activity.	Essential oils of <i>L. camara</i> can be used to control <i>H. contortus</i> .	
			Assessment of the efficacy of L.camara's essential oils on gastrointestinal nematodes.	Coumaran being a grain protector, also	Udayaprakash <i>et al.</i> , 2014
		Leaves		found to be a potent biofumigant.	Cuayaprakasir et at., 2014
			Coumaran a natural bioactive molecule were isolated from L. camara and was tested for pest attack during seed germination.		Macedo et al., 2013
		Not stated	L.camara is used for pot treatments to determine its efficacy against	L. camara extracts can effectively control nematode infection.	
		Tior stated	nematode infection in chickpea.		
			Extracts of L. camara were assessed for its activity against termite	L.camara extracts showed 100% termite mortality and thus paves way to	Rajashekar et al., 2013
		Leaf	infested buildings.	overcome synthetic termiticides problems.	
				problems.	Rehman et al., 2103
				Extracts of <i>L. camara</i> could be used as	
		Flower	Assessment of the efficacy of <i>L.camara</i> leaf extracts on mussel scale infection in black pepper.	botanical pesticides for organic farming.	Kaur and Raut, 2013
			scare infection in black pepper.		Kaui and Kaui, 2015
		Leaf	Crude powders of <i>L. camara</i> were evaluated for repellence, anti-	Extracts of <i>L. camara</i> could be used for pest management options in	

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

			feeding and toxicity on adult <i>P. truncatus</i> .	smallholder agriculture.	
					Sreekanth, 2013
		Leaf			
					Chebet et al., 2013
		Not stated			
7	Biosorbent	Fruit	Investigation was done to explore the performance of the acid-	L. camara extract acts as an effective	Nithya et al., 2016
			treated L.camara as a biosorbent.	biosorbent in removing toxic hexavalent chromium.	
		Not stated	Assessment of <i>L. camara</i> in raw (LR) and modified form (LM) for adsorptive removal of two basic dyes.	Modified form of <i>L. camara</i> (LM) has considerable potential for removal of RhodamineÂB (RB) and methylene blue (MB) from aqueous solution.	Banerjee et al., 2016
		Not stated	Mass transfer studies were done to evaluate the rate-limiting step in the adsorption of phenol from aqueous solution onto L. camara.	L. camara can be used as a potential adsorbent for the removal of phenol werein the rate-limiting step was found to be film diffusion.	Girish, and Murty., 2016
		Not stated	Assessment of the maximum adsorption capacity of activated carbon derived from L. camara to remove the hexavalent chromium from aqueous solution.	Highest removal efficiency of the biosorbent was found to be almost 99% under optimal conditions.	Offisii, and Waity., 2010
		Fruit	Assessement of L. camara as an adsorbent to remove phenol from aqueous solution.	Maximum adsorptioncapacity was found to be 149.77 mg g ⁻¹ .	Nithya et al., 2015
			Preparation of the activated carbon biosorbents from <i>L.camara</i> was carried out by sulphuric acid activation process.	L.camara adsorbent is used for the removal of an acidic dye tartrazine from aqueous solutions.	
		Stem	Adsorption of an anthraquinone dye Alizarin Red S onto biosorbent of <i>L. camara</i> has been studied on aqueous solutions.	(i) Kinetic studies revealed that the process was quite rapid and more than 90 % of equilibrium capacity was achieved within 80 min.	Girish, and Murty., 2015
		Not stated		(ii) Thermodynamic studies showed that the Alizarin Red S biosorbent system is spontaneous, exothermic and	Gautam et al., 2015

International Journal of Engineering and Scientific Research http://www.esrjournal.com Email: esrjeditor@gmail.com

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

				favourable in nature.	
					Gautam <i>et al.</i> , 2014
		Not stated			
8	Antibacterial	Root bark and flower	Petroleum ether, ethyl acetate, ethanol, and aqueous extracts of <i>L. camara</i> were tested against <i>E. coli</i> , <i>S. typhi</i> , <i>P. aeruginosa</i> , <i>S. aureus</i> , and <i>B. subtilis</i> .	 (i) Root bark in ethyl acetate extract showed highest activity against all bacteria. (ii) Flower ethyl acetate extract proved to be significant against <i>B.subtilis</i> and <i>S.typhi</i>. 	Jhariya et al., 2016
			Antibacterial activity of crude methanol extract of <i>L. camara</i> was testedagainst <i>P. emblica</i> , <i>P. roxburghii</i> , <i>D.salicifolia</i> and <i>P. aeruginosa</i> .	Methanol extract of L. camara proved to be an effective antibacterial agent.	Zulqarnainet al.,2015
			Assessment of antibacterial activity of leaf extract (LELC) of <i>L. camara</i> .	L. camara extract showed antibacterial activity against gram negative bacteria.	
		Not stated	Assessment of essential oils of lantana for its antibacterial activity against 6 strains, using broth dilution method.	Both the leaf and stem oils showed inhibitory activity against <i>S. aureus</i> , <i>S. epidermidis,B. subtilis, B.dysenteriae</i> , <i>B. proteus</i> , and <i>E.coli</i> .	Inbaraj <i>et al.</i> , 2014
		Leaf	Assessment of L.camara for its antibacterial potential.	Extracts of <i>L. camara</i> may be used to develop functional food and herbal medicines to treat oxidative stress diseases and bacterial infections.	Zhu et al., 2013
			Dried leaf powders were extracted using a hot-solvent extraction	Dichloromethane and methanol leaf extracts of <i>L. camara</i> proved to be effective against all bacterial strains.	Naqvi <i>et al.</i> , 2013
		Leaves, fruits and stems	method with eight polar to non-polar solvents and were assessed for its antibacterial activity.	L. camara extractswere active against E. faecalis, S. aureus and K.pneumonia.	
			Assessment of antibacterial activity against gram-positive and gram- negative bacteria using disc diffusion method.		
		Flowers and fruits			Dubey and Padhy, 2013
					Dubey and Fadny, 2015
					Garg et al., 2013

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

		Leaf			
9	Micropropagation and callus induction	Shoot	An efficient technique for the micropropagation and callus induction of <i>L. camara</i> was developed.	The produce plants and callus of <i>L.camara</i> , can be used as sources for bioactive ingredient.	Veraplakorn, 2016
10	Weed suppression	Leaves	Organic mulch of L. camara, were assessed for its weed control efficiency.	The maximum weed control efficiency of 72% was recorded.	Thankamani et al., 2016
11	Mosquito repellent	Whole plant	Assessment of L. camara extracts against mosquito.	L. camara oils and juices from crushed fresh parts of the plants, or various prepared extracts applied on uncovered body parts serve as mosquito repellent. The combination of O. gratissimum and	Pavela & Benelli, 2016
		Leaves	Assessment of the repellent activity of creams formulated with methanol crude extract, hexane fraction, and ethyl acetate fractions of <i>O. gratissimum</i> and <i>L. camara</i> in single and combined actions against female <i>A. aegypti</i> .	L. camara to formulate natural mosquito repellent using small amount of extracts can be an alternative to conventional repellents.	Keziah et al., 2015
12	Biofuel	Not stated	Two coupled kinetic models have been constructed to model laccase mediated delignification of <i>L. camara</i> .	Tessier's model gave better performance in delignification of <i>L.camara</i> when compared to Michaelis Menten model.	Gujjala <i>et al.</i> , 2016
		Not stated	Assessment of the feasibility of L. camara as a feedstock for biofuels production.	High yields of fermentable sugars from L. camara, even under unoptimized conditions, clearly indicate it's feasibility in the production of alcoholic biofuels.	Borah <i>et al.</i> , 2016
13	Enhancing oxidative stability of biodiesel	Leaf	Assessment of <i>L. camara</i> extracts for its total phenol, flavonoid, reducing power activity and free radial scavenging capacity using ethanol, methanol, ethyl acetate and chloroform.	Ethanol extract of <i>L. camaras</i> howed the highest in antioxidant activity and also increased the oxidative stability of biodiesel.	Ismail and Ali, 2016
14	Synthesis of nanoparticles	Root	Assessment of antioxidant and cytotoxic potential of gold nanoparticles (AuNPs) synthesized using lantana extract.	Diphenyl-2-picryl-hydrazyl (DPPH) assay, the inhibitory concentration (IC ₅₀) was 24.17 and 5.39 μ g/ml, and	Ramkumar et al., 2017

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

			for the cytotoxicity assay IC_{50} was 17.72 and 32.98 $\mu g/ml$ on human breast cancer cells and Vero cells respectively.	
	Leaf	Evaluation of AgNPs synthesized using <i>L. camara</i> on dose-dependent antibacterial and antioxidant potential.	The extract proved to be efficient against <i>S. aureus</i> , <i>E. coli</i> and <i>P. aeruginosa</i> ; and toxicity on brine shrimp.	Shriniwas and Subash, 2017
	Zear	To explore the potential of L . $camara$ in the fabrication of gold nanoparticles (AuNPs).	This approach is inexpensive, rapid and eco-friendly for industrial scale production of nanoparticles.	
	Flower	Synthesis of silver nanoparticles (AgNPs) using notorious weed,	Surface-modified AgNPs could be used effectively in future biotechnological concerns.	Kumar <i>et al.</i> , 2016
	Flower	L.camara. Synthesis of silver nanoparticles (AgNPs) of L. camara and to determine its antioxidant activity using Diphenyl-2-picryl-hydrazyl (DPPH) test.	 (i) Increase in the concentration of AgNPs increased the DPPH scavenging activity. (ii) AgNPs showed antibacterial activity against gram positive and gram negative strains. 	Kumar <i>et al.</i> , 2016
	Leaf	Assessment of <i>L. camara</i> for the synthesis of platinum nanoparticles, using ascorbic acid.	The collective action of ascorbic acid and leaf extract reduces the chloroplatinic acid to platinum nanoparticles and can also serves as a stabilizing agent.	Manjamadha and Muthukumar, 2016
	Leaf	Assessment of silver nanoparticles (Ag NPs) which is synthesized by reacting aqueous solution of silver nitrate (AgNO ₃) with <i>L. camara</i> extract for its antibacterial activity.	The synthesized AgNPs showed antibacterial activity against <i>E.coli</i> , <i>P.aeruginosa</i> , <i>S.aureus</i> and <i>B. subtilis</i> were found to be effective even at lower concentrations.	Mavukkandy et al., 2016
	Flower, leaf and stem	Assessment of silver nanoparticles (AgNPs) synthesized using $L.camara$ extract for its antibacterial and catalytic activities.	 (i) AgNPs exhibited good antibacterial activity when tested against using standard Kirby-Bauer disc diffusion assay. (ii) Catalytic activity on the reduction of methylene blue by <i>L. camara</i> was identified using UV-Vis spectrophotometer. 	Rochlani et al., 2016

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

			The AgNPs proved to be effective against all bacterial strains.	Ajitha et al., 2015
	Leaf	Assessment of <i>L.camara</i> mediated silver nanoparticles (AgNPs) with different leaf extract (LE) quantity for its bactericidal activity. Extracts of <i>L. camara</i> were used to synthesize the silver nanoparticles (AgNPs) and its antioxidant activity against 1, 1-diphenyl-2- picrylhydrazyl were determined.	Surface modified AgNPs showed higher antioxidant activity than berry extract against 1, 1-diphenyl-2-picrylhydrazyl and could be futher explored in ethno pharmacological field.	
		L.camara extract were used for the synthesis of silver nanoparticles.	Green route synthesized nanoparticles are extremely toxic to multidrug resistant bacteria and have widespread applications in biomedical science.	Ajitha <i>et al.</i> , 2015
	Leaf Ripened berry	Effect of temperature and leaf extract (LE) concentration of <i>L. camara</i> was assessed on the synthesis and size of silver nanoparticles (SNPs).	(i) Transmission electron microscope (TEM) analysis revealed the average size of SNPs were 17 ± 9.5 nm with 5% LE of <i>L. camara</i> (ii) Desired size SNPs can be synthesized using these LEs at a particular temperature for its application in the biomedical field	Kumar <i>et al.</i> , 2015
	Ripelled berry	nanoparucies (Sivi s).	Gold nanoparticles (AuNPs) were synthesized by thermal reduction of chloroauric acid (HAuCl4).	Singh <i>et al.</i> , 2015
	Leaf	Aqueous extracts of L . $camara$ were used as a reducing and stabilizing agent.		Kumari <i>et al.</i> , 2015
	Leaf			

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

_					
		Lasf			Sane et al., 2013
15	Insecticide	Leaf Leaf. stem and	Aerial parts of <i>L. cámara</i> were evaluated for its insecticidal	Seven different concentrations were	Ranjan <i>et al.</i> , 2016
15	Insecticide	flowers and fruits	Activities against <i>C. maculatus</i> .	studied among which 5.0% dose was highly significant.	Ranjan et al., 2016
		Leaf	Assessment of L. camara extract with petroleum ether compounds for its activity against subterranean termites, <i>R.flaviceps</i> .	(i)L camara extract of petroleum ether had a strong repellent effect at higher concentrations. (ii) Although the extract had no toxic effect on termites, its antifeedant activity was significant.	Han et al., 2016
		Leaf	Assessment of L.camara extracts on antifeedant and larvicidal activities of polar and non polar solvents, using leaf disc no-choice method against different stages of <i>P.xylostella</i> .	 (i) Increasing the concentration resulted in higher deterrence and larval mortality. (ii) Hexane extract of <i>L</i>. camara has the potential to serve as an alternate biopesticide for insect pest management. 	Thanavendhan and Kennedy, 2016
			Aqueous extracts of lantana were tested for its anti-termitic effect using subterranean termite (O. wallonensis).	L. camara was observed to be effective termiticide.	
			Assessment of L camara extract for its biofumigant potential against housefly.		
		Not stated	Acetonic plant extracts of L.camara, were tested for their	Biofumigants (Coumaran) of <i>L.camara</i> could be an alternative to chemical fumigants against stored grain insect	Vasanthi et al., 2016
		Leaf	insecticidal and repellent effectiveness using saw-toothed grain beetle.	Application of these extracts may be promising in protecting stored date and grains against the attack of	Rajashekar et al., 2014
			L camara extracts were prepared by Soxhlet separation by n-hexane, dichloromethane and methanol, evaporated to dryness and kept at 4 °C until toxicity test. Twenty adult gravid females of	O.surinamensis. (i)Dichloromethane and n-hexane	
			T.urticae were placed on mulberry leaf disc and extracts were	extracts of L. camara flowers repelled	Madkour et al, 2013

International Journal of Engineering and Scientific Research http://www.esrjournal.com Email: esrjeditor@gmail.com

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

		Not stated Leaf and flowers	applied by "no choice and choice bioassay". Assessment of <i>L. camara</i> extracts as larval inhibitor in house flies.	66.04 ± 5.45% and 60.83 ± 3.45% <i>T. urticae</i> from the leaf discs. (ii)Dichloromethane, n-hexane and methanol extracts of <i>L. camara</i> flowers reduced the oviposition per day rate of <i>T. urticae</i> to 42.3, 34.7 and 17.4% when compare to ethanol-treated controls. <i>L. camara</i> was a strong repellent for oviposition and showed a significant larvicidal activity in <i>M. domestica</i> when compared to <i>O. basilicum</i> , <i>G. jasminoides</i> and <i>D. viscose</i> .	Srimongkolchai et al., 2013
16	Bioactive compounds-	Leaf Leaf	To identify and characterize the main production sites of the	This helps in gaining knowledge of the	Ahmed et al., 2013 De Melo Silva et al., 2016
	treats infections and respiratory disease (antimicrobial potential)	Leaf	biologically active substances in the leaf blades of <i>L. camara</i> . Assessment of the effect of different solvents (ethyl acetate, methanol, acetone, and chloroform) on the extraction of phytoconstituents from <i>L. camara</i> and their antioxidant and antibacterial activities. Assessment of leaf extract of <i>L. camara</i> (LELC), alone and with gentamicin, ceftrioxone using disc diffusion and agar dilution method for its antimicrobial effect.	sites responsible for the production of substances with ecological and medicinal value (i) The presence of various phytocompounds in the extracts. (ii) Methanol extract had the highest inhibition activity against all the tested microbes.	Swamy et al., 2015
		Leaf	Herbal tincture was developed from <i>L. camara</i> at different concentrations of 20%, 40%, alcohol in tincture were tested against standard Iodine (I2).	(i) The LELC showed antibacterial effect against NDM1 strain producing bacteria in addition to gram negative bacteria. (ii) Hence LELC has the potential for the development of an ideal and futuristic antimicrobial agent against NDM1 producing organisms.	Inbaraj <i>et al.</i> , 2015

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

	Flowers	Assessment of antimicrobial properties of lantana in the presence of active alkenes and long chain fatty acid molecules.	(i) L. camara tincture was non-inferior to iodine. (ii) Concentrated extracts of L.camara revealed its accelerated healing and better anti-microbial competency so that it can be developed for clinical practice. L.camara proved to be effective against S. aureus, P. mirabilis, P. aeruginosa, B. cereus and E. coli.	Kumar <i>et al.</i> , 2015 Vaibhav <i>et al.</i> , 2013
17 Fungicide	Leaf	Lantana extracts were used as bio-agents to manage downy mildew of pea.		Patil et al., 2017
	Leaf Not stated Leaf	Assessment of <i>L. camara</i> extracts for its antifungal activity against <i>C. gloeosporioides</i> . Assessment of <i>L. camara</i> extract for its antifungal activity using the agar well diffusion method. To evaluate the efficacy of <i>P.lilacinus</i> in combination with five concentration of <i>L. camara</i> crude aqueous leaf extract against <i>M.incognita</i> on tomato. Assessment of lantana essential oils on the phytopathogens (rice pathogens). Investigating methods of preparing verbascoside-rich plant extracts from <i>L. javanica</i> and <i>L. camara</i> .	 L. camara extracts proved to be effective in managing mildew disease. L. camara extracts can serve as an alternative means of post-harvest mango anthracnose disease management. L. camara extracts proved to be effective fungicide against C.albicans and F. udum. (i) L. camara extract alone significantly (P≤ 0.05) inhibited root galling and egg production compared with their respective control. (ii) Application of P. lilacinus twice in combination with 0.80g mL¹ of L. camara extract was the most effective treatment. L. camara essential oils proved to be efficient against B. oryzae and G.oryzae. L. camara is an excellent source of verbascoside. 	Deressa et al., 2015 Sharanappa & Vidyasagar, 2015 Udo et al., 2014 Knaak et al., 2013

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

		Leaf			Oyourou et al., 2013
18	Production of plant growth promoting actinomycetes	Root (rhizosphere)	Lantana root rhizosphere was used to isolate actinomycetes.	The isolated actinomycetes serves as plant growth promoter and can also be used as biofertilizers.	Damam et al., 2016
19	Metal phytoremediation potential	Root and shoot	Assessment of theextracts of L. camara for their metal uptake potential. Different concentrations of lead were used to contaminate a	 (i) L. camara showed translocation from root to shoot for most of the metals except Mn and Pb. (ii) L. camara can be used as a phytoextractor of metal for fly ash dumpsite reclamation. L. camara is a potential indicator plant for phytoremediation. 	Pandey et al., 2016
		Fruit	characterized soil with empty fruit bunch and spent mushroom compost as amendments with L. camara alongwith controls.		Alaribe and Agamuthu, 2015
20	Medicinal use	Not stated	Assessment of <i>L. camara</i> for its anthelmintic activity.	Lantana plant extracts had promising effects against <i>F.hepatica</i> .	Alvarez-Mercado et al., 2015
		Not stated	To evaluate the wound healing property of L.camara in diabetic rats.	Topical application of ethanolic extract of L.camara showed dose dependent wound healing activity in diabetic rats.	Shetty and Amuthan et al., 2014
		Leaf	To formulate and evaluate the herbal gel containing L.camara leaf extract.	Better stability was observed by the formulation containing L. camara when applied on animal model (rats no skin irritation was noticed).	Pawar and Shamkuwar, 2013
			Assessment of L.camara, for itsantioxidant and anti-tyrosinase activities.	L.camara proved to be an effective antioxidant and the extracts can be used as skincare products.	Priyadharsini <i>et al.</i> , 2013

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

		Not stated			
21	Beneficial in sustenance of the butterflies	Not applicable	L.camara, an invasive plant species, was assessed highlighting its role in maintenance of butterfly diversity.	The existence of <i>L</i> . camara in urban gardens and forests may prove beneficial in sustenance of the butterflies.	Mukherjee et al., 2015
22	Organic fertilizer	Leaves	Vermicompost derived solely from a weed such as lantana known to possess plant and animal toxicity, hence was used to assess its impact on the germination and early growth of several plant species. Composting of lantana biomass was done and changes in chemical characteristics of waste biomass were measured.	Billions of tons of phytomass that is generated annually by lantana and other invasives can be gainfully utilized in generating organic fertilizer via vermicomposting.	Hussain et al., 2015
		Not stated	Assessment of vermicompost derived from lantana on the germination, growth, and yield of a botanical species, has been carried out.	Composting can be a potential technology to manage lantana biomass for sustainable land fertility management programs.	Rawat and Suthar, 2014
		Leaf	Long term effects of lantana residue and fertilizer application were	Allelopathic ingredients of lantana seem to have been totally eliminated during the course of its vermicomposting and that lantana vermicompost has the potential to support germination, growth, and fruit yield better than equivalent quantities of inorganic fertilizer.	Karthikeyan <i>et al.</i> , 2014
			studied on nitrogen (N) fractions in a <i>T. Hapludalf</i> under rice-wheat cropping.	(i) After 12 crop cycles, lantana and fertilizer application showed an additive effect on the buildup of different N fractions. (ii) Inclusion of lantana indicated net saving of 33% fertilizers plus higher yields and sustained soil health.	Sharma <i>et al.</i> , 2014
		Not stated	Vermicomposting trials of L.camara spiked with cow dung in different ratios using <i>E. fetida</i> .	Lantana may be a potential source for vermicompost production for sustainable agriculture.	

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

					Suthar and Sharma, 2013
		Leaf			
23	Pb phytoextraction	Not stated	Assessment of metal extraction using microcosms combining earthworms (<i>P.corethrurus</i>), L.camara and soil spiked with 500 and 1000 mgPbkg ⁻¹ .	 (i) Pb uptake by <i>L</i>. camara increased by about 2.5-fold in the presence of earthworms, regardless of the Pb concentration. (ii) Interactions between earthworms and soil microorganisms have a positive effect on Pb-phytoextraction yield. 	Jusselme et al., 2015
24	Heat transfer biofluids	Not stated	L. camara were used as model systems to investigate as heat transfer biofluids for their potential application in heat transfer industries.	 (i) The thermal conductivity of L. camara biofluids was found to be higher than that of various nanoparticles based nanofluids. (ii) L. camaracan be used as coolants in heat transfer industries instead of water used in various industries. 	Wan et al., 2015
25	Isolation of bioactive chemical	Leaves	Isolation and identification of flavonoid compound from the leaves of lantana.	Compound 1 (Gautin) showed highest antibacterial activity against gram negative bacteria, <i>E. coli</i> and highest antifungal activity against <i>A. niger</i> .	Patil et al., 2015
26	Antibiotic potential	Leaf and root	Antibacterial activities of lantana-ethanol extracts alone or in association with aminoglycosides were determined by a micro dilution test. To investigate the anthelmintic activity of L. camara extract using adult earthworm, <i>P.posthuma</i> .	L. camara extracts in combination with aminoglycosides proved to be effective against bacterial strains. The extract exhibited significant dose dependent anthelmintic activity.	De Sousa et al., 2015 Londhe et al., 2013
		Leaf	* *	1	·
27	Corrosion inhibition	Leaves	Corrosion inhibition of mild steel (MS) by aqueous extract of <i>L.camara</i> leaves (AELCL) has been studied by gravimetric method at different temperatures.	(i) Inhibition efficiency increases with increase in inhibitor concentration and decreases with increase in temperature within the studied range of concentrations and temperatures. (ii) Maximum inhibition efficiency of 90% was observed with 6% (v/v) concentration of inhibitor at 30°C.	Bhardwaj et al., 2015
28	Radical scavenging properties	Leaves and stem	Methanolic extracts of the leaves and stem of <i>L. camara</i> were used for polyphenols, flavoides and their free radical scavenging properties using ascorbic acid as standard antioxidant.	Lantana leaves proved to be beneficial and showed an effective antioxidant activity.	Ali and Elgimabi, 2015

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

29	Isolation and characterization of oleanolic acid	Root	To isolate oleanolic acid from the roots of L.camara and its chemical characterization by spectroscopic methods.	(i) Oleanolic acid isolated from <i>L.camara</i> root yields 0.9 % w/w of the dried powder. (ii) TLC, HPLC and IR spectra of the isolated oleanolic acid showed identical, characteristic signals and absorbance similar to the reference standards.	Narendra and Ameeta, 2014
30	Bioethanol production	Not stated	L. camara has found to be a potential feedstock for ethanol production.	A maximum bioethanol concentration of 6.01 % (v/v) was obtained using the mutated strain of <i>S. cerevisiae</i> .	Kuila and Banrejee, 2014
31	Agricultural potential	Not stated	Bioconversion of agriculture wastes like L.camara as a substrate for oyster mushroom cultivation together with wheat straw as a control.	Utilization of the plant biomass for mushroom cultivation could contribute in alleviating ecological impact of invasive weed species and also offers a practical option to mitigating hunger and malnutrition in areas where the invasive weeds became dominant.	Mintesnot et al., 2014
32	Anxiolytic effect	Leaf	To investigate the anxiolytic activity of ursolic acid stearoyl glucoside (UASG) isolated from L.camara leaves using column chromatography.	UASG showed its anxiolytic effect in dose dependent manner.	Kazmi et al., 2013
33	Anti-obesity potential	Not stated	Anti-obesic activity of <i>L.camara</i> was studied on progesterone induced models of hyperlipedemia in mice.	 (i) Accumulation of fat in areas like inguinal, epididymal, neck etc. was observed. (ii) Ethanobotanical knowledge of medicinal plants is one of the most prominent sources of new drugs and has shown potential results for treatment of obesity. 	Gundamaraju et al., 2013

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

Table 2: A gist of attempts at utilizing parthenium (*Parthenium hysterophorus*)

S.no	Type of use	Plant component used	Type of experiment	Key findings	Reference
1	Root fungus improves plant growth through phosphate solubilization	Root	Assessment of plant growth promoting ability of <i>C.geniculata</i> (fungus) isolated from P. hysterophorus. The abilities of the fungus to solubilize different sources of phosphorus and to produce indole acetic acid (IAA) were also determined.	(i) <i>C. geniculata</i> -inoculated pigeon pea plants exhibited superior growth over uninoculated control plants and the fungus solubilized different sources of P in the order of FePO ₄ >AlPO ₄ >Ca ₃ (PO ₄) ₂ . (ii) This enables the use of this fungus as bioinoculant in plant production systems.	Priyadharsini and Muthukumar, 2017
2	Cellulase production	Not stated	Assessment of P. hysterophorus for cellulase production using <i>T. reesei</i> , bysolid-state fermentation.	(i) Highest cellulase production was achieved on the 8th day of incubation, at 30 °C, keeping solid-to-liquid ratio to be 1:2. (ii) <i>T.reesei</i> grown on P. hysterophorus proved to be effective in cellulose production.	Saini et al., 2017
3	Adsorbent	Not stated Not stated	Assessment of P. hysterophorusgenerated activated N-biochar (PH-ANB) as a sorbent for the effective removal of micro-pollutant and ranitidine hydrochloride (RH). Assessment of P. hysterophorusgenerated chemically modified N-biochar (CMNB) as a potential sorbent for the removal of ibuprofen from contaminated water using NaOH.	 (i) A maximum removal of 99% of RH was achieved at an adsorbent dose of 0.05 g L⁻¹, agitation speed 120 rpm, pH 2, equilibrium time 90 min and temperature 20 °C. (ii) This proves PH-ANB could be an effective adsorbent. (i) Maximum adsorptive removal of ibuprofen by CMNB was found to be more than 99% at adsorbent dose of 20 g L⁻¹, agitation speed 160 rpm, pH 2, initial ibuprofen concentration 20 mg L⁻¹, equilibrium time 120 min and temperature 20°C. (ii) CMNB could be a cost-effective and efficient adsorbent. 	Mondal <i>et al.</i> , 2017 Mondal <i>et al.</i> , 2016
4	Biochars	Not stated Not stated	Assessment of P. hysterophorusgenerated biochar for its physicochemical properties. Assessment of P. hysterophorusgenerated biochar on soil and cultivation system (rice and wheat) over a period of one year.	 (i) Biochar produced at higher temperature had higher water holding capacity and pH, which can be used as a soil amendment. (ii) The biochar produced at 650°C had highest yield in the range of 28.52–39.9 % by weight. (i) Use of biochar is cost effective both rice and wheat cultivation. (ii) Biochar increased the C/N ratio of soil andact as a good conditioner. (iii) Structure as well as the water/nutrient holding capacity of soil was improved owing to the macroporous nature of biochar. With increase in temperature, biochar yield decreases, 	Narzari et al., 2017 Shafiq, 2016

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

				whereas its stability increases.	
			P.hysterophorus was charred at different temperature (200-500°C) and residence time (30-120 min) to obtain biochar.		
		Not stated			Kumar et al., 2013
5	Synthesis of biodegradable poly(3-hydroxybuty- rate) (PHB)	Not stated	Synthesis of biodegradable poly (3-hydroxybutyrate) (PHB) polymer from <i>P</i> . hysterophorususing sonication.	The PHB content of dry cell mass was $8.1-21.6\%$ w/w, and the PHB yield was 6.85×10^{-3} - $36.41\times10^{-3}\%$ w/w raw biomass.	Pradhan et al., 2017
6	Anti-fungal and anti- mycobacterial activity	Not stated	Assessment of P. hysterophorusfor its antifungal activity using methanol extract.	Parthenium extracts showed activities between 31.25 and 125µg/mL against several <i>Candida</i> strains.	Garza et al., 2017
7	Vermicomposting	Not stated	Assessment of vermicomposting of parthenium mixed with biogas plant slurry in six different combinations for 60 days.	(i) Worm biomass and cocoon production increased in all the vermibins and the best results were shown by 100 % biogas plant slurry than the other combinations. (ii) NPK in the vermicomposts was found to be higher and their C: N ratio was < 20 indicating that parthenium-spiked biogas plant slurry serves as nutrient-rich manure. (i) Parthenium, known to possess a strong negative allelopathy, its vermicompost (VC) manifested none of these attributes. (ii) Rather it enhanced the germination success and can be gainfully utilized in producing organic fertilizer.	Yadav and Garg, 2016
		Leaves Not stated	Vermicompost, which had been derived solely by the action of the epigeic earthworm <i>E. fetida</i> on parthenium, was tested for its impact on the germination and early growth of <i>V. radiata</i> , <i>A. esculentus</i> and <i>C. sativus</i> . Assessment of vermicomposting of P. hysterophorususing <i>E.fetida</i> .	 (i) Vermicompost derived was found to begoodcompared to any other organic manure. (ii) Using the readily available phytomass proved this approach could be economically feasible and eco friendly. (i) The worm growth, biomass gain, cocoon production and antioxidant enzymes were lower in vermibins containing higher concentration of <i>P.hysterophorus</i> (without cow dung). (ii) Appropriate mixing of <i>P.</i> hysterophorus quantity is an essential factor for the survival of earthworms without causing any harm. 	Hussain et al., 2016 Yadhav., 2015
				P. hysterophorus when mixed in appropriate quantities of cow dung can aid worm growth and fecundity.	

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

		Whole plant	Assessment of vermicomposting of P. hysterophoruson <i>E.eugeniae</i> . Nine different concentrations of partheniumand cow dung mixtures were used to assess toxicity.	Spectral results indicate that parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.	Rajiv <i>et al.</i> , 2014
		Not stated Not stated	Assessment of vermicomposting of <i>P</i> . hysterophorus and cow dung mixtures using <i>E.eugeniae</i> . Assessment of vermicomposting of <i>P</i> . hysterophorus and cowdung mixtures using <i>E.eugeniae</i> . Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy (GCMS) have been used to investigate parthenium mediated vermicompost.		Rajiv <i>et al.</i> , 2013 Rajiv <i>et al.</i> , 2013
8	Identification of novel P20	Leaf	To investigate which orthologues of P. hysterophorus encodes P20 protein.	 (i) Tryptic digest of purified protein revealed the predicted size of the protein is ~20kDa by MALDI-TOF and identification of peptides present in the P20 protein is done by peptide sequence analysis. (ii) A combination of bioinformatics and proteomics approaches led to the identification of novel P20 candidates. 	Vemuri, 2016
9	Bioethanol production	Leaf and stem	Assessment P. hysterophorus and itspotential as a source for bioethanol production. Cellulose and hemicellulose of P. hysterophorus biomass were converted to sugars using acid and enzymatic hydrolysis.	(i) Maximum production of 219.67μL/mL ethanol is found in enzymatically hydrolyzed mixture andthe acid hydrolyzed material, maximum yield was157.57 μL/mL. (iii) Utilization of enzymatic hydrolysis of <i>P</i> . hysterophorus derived plant materials would be an ecofriendly approach for bioethanol production. Ethanol obtained on the detoxified lignocellulosic broth under optimal conditions was 0.24, 0.27 and 0.27 g/g biomass.	Gupta et al., 2017
			Assessment P. hysterophorus and its potential forsecond generation bioethanol production using		

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

		Not stated	three yeast strains namely <i>T. delbrueckii</i> , <i>S. pombe</i> and <i>S. cerevisiae</i> . Assessment P. hysterophorus and its potential forultrasound assisted bioethanol synthesis through simultaneous saccharification and fermentation (SSF). Assessment P. hysterophorus and its potential as a	A 4-fold rise in ethanol and cell mass productivity is seen with ultrasound method compared to conventional methods. (i) Ethanol yield from fermentation of pentose and hexose hydrolyzates was 0.26 g/g raw biomass. (ii) This process also provides a potential solution to effective utilization of the noxious weed such as <i>P. hysterophorus</i> .	Tavva et al., 2016
		Not stated	source for bioethanol production.	Fermentation of the enzyme hydrolysate was carried out using <i>S.cerevisiae</i> at 30°C, 120 rpm for 48 h and an ethanol titer 5.46 g/L was achieved.	Singh et al., 2015
		Not stated	Assessment P. hysterophorus and its potential as a source for bioethanol production.	Researchers can further explore a suitable kinetic model to study the reaction mechanism for hydrolysis of <i>P. hystrophorus</i> and optimize different parameters such as temperature, time, acid concentrations and alkali concentrations in order to aid higher yield of ethanol.	Bharadwaja et al., 2015
		Not stated	Assessment P. hysterophorus and its potential as a source for bioethanol production using three simple steps namely hydrolysis, saccharification and fermentation.		Singh <i>et al.</i> , 2014
		Leaf			Swati et al., 2013
10	Hematological and immune modulator in wistar rats	Leaves	Assessment of <i>P.hysterophorus</i> leaf extract on hematological parameters of wistar rats.	 (i) <i>P.hysterophorus</i>did not support the traditional use of the plant leaf for stimulation of blood production. (ii) However it showed improvement of non-specific immune responses involving phagocytosis and inflammation proving it to be an effective immune modulator. 	Vemuri <i>et al.</i> , 2016
11	Antimicrobial activity	Whole plant	Assessment of <i>P.hysterophorus</i> for its antimicrobial activity using chloroform, methanol, acetone, ethyl acetate, petroleum ether and distilled water. Ciprofloxacin and amphotericin were used as standard antibiotics.	(i) Some of the solvent extracts of the plant showed the highest activity against some pathogenic microorganisms than standard antibiotics used.(ii) The findings support production of new bioactive compounds from invasive weeds.	Kaur <i>et al.</i> , 2016

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

		Stem Leaves	Assessment of <i>P.hysterophorus</i> for its antimicrobial activity using ethanol extract. AssessmentofP. hysterophorus for its antimicrobial activity using agar well diffusion method against <i>S. aureus</i> , <i>B. subtilis</i> , <i>E. coli</i> , <i>P. aeruginosa</i> , <i>C. albicans</i> and <i>S. cerevisiae</i> . Assessment of <i>P.hysterophorus</i> for its antimicrobial activity against clinical isolates of bacterial and fungal cultures using methanol extract.	Antimicrobial activity was observed with <i>E. coli, A.niger, C. albicans</i> while, <i>S. aureus</i> showed no zone of inhibition. Organic leaves extract of weeds were more effective than aqueous extract. Antimicrobial activity exhibited by the methanol leaf extract has shown significant potential in inhibiting various pathogens.	Krishnaveni <i>et al.</i> , 2015 Kaur <i>et al.</i> , 2016 Krishnavignesh <i>et al.</i> , 2013
12	Diagnostic markers in medicine	Leaves Flower	Assessment of <i>P</i> . hysterophorus flower proteins for its IgG purification using phenol extract. The purified allergens were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.	Several proteins in the range of 18-40kDa could be used as diagnostic markers for patients allergic to <i>P</i> . hysterophorus.	Vemuri, 2016
13	Anti-plasmodial activity in medicine	Aerial part and roots	Crude extracts from the aerial part and root of <i>P</i> . Hysterophorus, were assessed for itsantiplasmodial activity against <i>P. berghei</i> and its citotoxicity against human fibroblast. Assessment of <i>P. hysterophorus</i> for its antiplasmodial activity against chloroquine-sensitive and chloroquine-resistant strains of <i>P. falciparum</i> grown in human red blood cell.	 (i) Lactonerich extract of <i>P</i>. hysterophorus aerial part was the most cytotoxic compared to root extract. (ii) The potential of lactone-rich extract from <i>P</i>. hysterophorus as a basis for a future anti-malarial phytomedicine. (i) <i>P. hysterophorus</i> showed an antiplasmodial activity ofIC50: 2.1 mg/ml against <i>P. falciparum</i>. (ii) Thus confirmsthe traditional use of some invasive plants against malaria. 	Valdés et al., 2016 Singh et al., 2015
14	Pesticide	Whole plant Not stated Stem, leafand	Assessment of P. hysterophorusand 4 other plants against the growth of <i>T.castaneum</i> using ethanol and acetone ectracts. Assessment of <i>P.hysterophorus</i> powders against <i>C. maculatus</i> on stored chickpea seeds.	P. hysterophorus proved to be most effective inhibitor of egg hatching in <i>T.castaneum</i> compared to other plant extracts used for the study. (i)The leaf, inflorescence and stem powder caused 40 - 73.33%, 43.33 - 83.33% and 36.67 - 56.67% adult mortality, respectively.	Khan et al., 2016 Patro and Patro, 2015

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

		inflorescence		(ii) Highest inhibition rate was 86.16% in leaf powder and lowest of 57.73% in stem powder.	
15	Medicinal use (gastric ulcer)	Not stated	Assessment of <i>P. hysterophorus</i> extracts against <i>H. pylori</i> growth and colonization-related factors.	Dichloromethane–methanol extracts possess the highest effect, with 70% maximal inhibition of <i>H. pylori</i> , growth and colonization at 1 mg/ml.	Espinosa-Rivero et al., 2015
		Leaf, root, flower	Assessment of <i>P. hysterophorus</i> for its antibacterial activity using solvents such ashexane, benzene, and chloroform.	P. hysterophorusextracts revealed considerable antibacterial, antioxidant, lipo-protective, antihemolytic, and anticancer potential.	Kumar <i>et al.</i> , 2014
		and stem	Assessment of <i>P. hysterophorus</i> for its cytotoxic and antioxidant potential.	Phytochemicals present in <i>P</i> . hysterophorus leaf have considerable potential as cytotoxic and antioxidant agents with low to moderate anti-HIV activity.	
		Leaf		Phytochemicals present in <i>P.hysterophorus</i> extracts have considerable antioxidant potential as well as lipo-protective	Kumar <i>et al.</i> , 2013
			Assessment of <i>P. hysterophorus</i> extracted using Soxhlet apparatus for its antioxidant potential.	activity against membrane damage.	
		Flower and root			Kumar et al., 2013
16	Heat transfer biofluids	Not stated	P. hysterophoruswere used as model systems to investigate as heat transfer biofluids for their potential application in heat transfer industries.	 (i) The thermal conductivity of <i>P. hysterophorus</i> biofluids was found to be higher than that of various nanoparticles based nanofluids. (ii) <i>P. hysterophorus</i> can be used as coolants in heat transfer industries instead of water used in various industries. 	Wan et al., 2015
17	Enhanced enzymatic hydrolysis	Not stated	Assessment of P. hysterophorus to establish the mechanism of the ultrasound-induced enhancement of enzymatic hydrolysis.	Trends in kinetic and physiological parameters of <i>Hexachlorocyclohexane-I</i> (HCH-1) model reveal that sonication enhances enzyme/substrate affinity and reaction velocity of hydrolysis.	Singh et al., 2015
18	Synthesis of nanoparticles	Leaf	Assessment of <i>P.hysterophorus</i> leaf extract for itssize-dependent antibacterial activities using the synthesizedsilver (Ag) nanoparticles.	P. hysterophorus leaf extract capped 20±2nm Ag nanoparticles (7.5g/ml) shows statistically significant antibacterial activity against gram negative P. aeruginosa and gram positive S.aureus.	Anwar et al., 2015
			Assessment of <i>P.hysterophorus</i> as reducing and capping agent for degradation of Reactive Red 31 using the synthesized titanium dioxide (TiO ₂)	Biogenic TiO ₂ nanomaterial acts as a good photocatalyst for the degradation of textile dye Reactive Red 31.	
		Not stated	nanoparticles.		Khan and Fulekar, 2015

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

		Root	Assessment of P.hysterophorus against <i>C.quinquefasciatus</i> using the synthesized silver nanoparticles from aqueous root extract. Assessment of P.hysterophorus for the synthesis of zinc oxide nanoparticles.	The synthesized silver nanoparticlesshowed moderate larvicidal effects against <i>C.quinquefasciatus</i> compared to commercial pesticides. (i) To synthesize zinc oxide nanoparticles from <i>P. hysterophorus</i> by inexpensive, ecofriendly and simple method. (ii) To explore its size-dependent antifungal activity against plant pathogens.	Mondal <i>et al.</i> , 2014 Rajiv <i>et al.</i> , 2013
19	Biofuel	Not stated	Assessment of P.hysterophorus for biofuel production.	P. hysterophorus has same potential for being the feedstock for biofuels as that of other conventional agro- and forest residues.	Singh et al., 2014
20	Substrtae for mushroom cultivation	Whole plant	Assessment of P. hysterophorusas a substrate for oyster mushroom cultivation together with wheat straw as a control.	<i>P.ostreatus</i> grown on <i>P.</i> hysterophorus had a biological efficiency of 83.87% and production rate is 3.13 which is significant at p<0.01.	Mintesnot et al., 2014
21	Seed priming	Leaf	Assessment of P.hysterophorusfor its effect on rice seedling using methanol leaf extracts (10:100 w/v).	P.hysterophorus extracts increased germination rate and germination percentage as compare to control.	Ashfaq et al., 2014
22	Allelopathy- use in weed suppression	Whole plant	Assessment of P. hysterophorus for controlling weeds in wheat along with reduced doses of phenoxaprop-pethyl and bromoxinil+MCPA.	Weed density was encouragingly suppressed (compared to control) when the allelopathic plant water extracts were used in combination with lower doses of herbicides.	Khan and Afridi, 2014
23	Antibacterial activity	Leaf	Assessment of <i>P</i> . hysterophorus extracts for its antibacterial activity using benzene, ether and chloroform.	It strongly indicates antibacterial potential of <i>P</i> . hysterophorus extracts against bacterial pathogens of rice crop.	Ashfaq et al., 2013
		Not stated	Assessment of <i>P</i> . hysterophorus forits antibacterial activitiy against, <i>P</i> . aeruginosa, <i>M</i> . luteus and <i>B</i> . cereususing disc diffusion method.	 (i) Methanol was the best solution for extracting the effective antibacterial materials from P. hysterophorus compared with standard drug, ciprofloxacin. (ii) This shows the importance of producing new bioactivity compounds having antibacterial activity. 	Malarkodi and Manoharan, 2013
24	Germination and seedling growth	Leaf, stem and root	Assessment of P. hysterophorusfor its allelopathic potential in relation to the germination and seedling growth of two crops namely R. sativus and B. juncea.	(i)P.hysterophorus extracts (100%, 50%, 25% and 5%) inhibited seed germination as well as hypocotyl and radicle lengths of two crop species and the inhibitory effect increased with increasing extract concentration. (ii) The order of this inhibitory effect was leaf > stem > root on two target species.	Hu et al., 2013
25	Phytoremediation	Root and shoot	Assessment of P. hysterophorusfor its heavy metal accumulation potential.	(i)P. hysterophorus found to have an enrichment coefficient of >1, which reflects its high metal accumulation potential.	Kumar et al., 2013

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

	potential			(ii) Itcanbe used for the phytoremediation and restoration of land contaminated toxic metals.	
26	Antifungal activity	Not stated	Assessment of P. hysterophorus for its antifungal activities using extracts of ethanol, chloroform, methanol, acetone, ethyl acetate, hexane, petroleum ether and aqueous.	Methanol was the best solution for extracting the effective antifungal materials from the P. hysterophorus compared with standard drug, ketoconazole.	Malarkodi and Manoharan, 2013
27	Isolation, identification and screening of endophytic Streptomyces	Leaf and root Not stated	Assessment of P. hysterophorusfor the presence of polyketide synthases type I(PKS-I gene) in endophytic streptomyces.	 (i) Crude extracts of 12 strains of Streptomycetes spp, exhibited significant antimicrobial activity against multi drug resistant nosocomial pathogens including Pseudomonas, Enterobacter, Bacillus, E. coli, S. aureus and C. albicans (ii) This provides an insight into an untapped endophytic environment yet to be explored. (i) Molecular screening revealed that the presence of PKSI gene with a PCR amplification products of size ~300 bps, ~320 bps and ~700 bps. (ii) This provides an insight into an unexplored environment which if further investigated may lead to a new source of antimicrobial agents. 	Tanvir <i>et al.</i> , 2013 Tanvir <i>et al.</i> , 2013
28	Air pollution tolerance index and antioxidant activity	Leaf	Assessment of <i>P</i> . hysterophorusfor itssecondary metabolites mediated antioxidant activity and air pollution tolerance index.	P. hysterophorus was found to be a tolerant species to pollution, its high flavonoid content might be playing a major role in imparting antioxidant potential.	Krishnaveni, 2013

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

Table: 3: Attempts at utilization of *Salvinia molesta*

S.no	Type of use	Plant component used	Type of experiment	Key findings	Reference
1	Phytoremediation	Whole plant	Assessment of <i>S.molesta</i> in detoxifying coal mine effluent	i) <i>S. molesta</i> removed Pb -96.96% > Ni - 97.01% > Cu- 96.77% > Zn- 96.38% > Mn- 96.22% > Fe- 94.12% > Cr- 92.85% > Cd-80.99% in 10 days. ii) Impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% from the control.	Lakra <i>et al.</i> ,2017
		Whole plant	Assessment of <i>S.molesta</i> in treating fish farm wastewater	i) <i>S.molesta</i> significantly removed 95% phosphate, and other parameters such as ammonia, turbidity and total suspended solids were within the standards in just 2 days.	Ng et al., 2017
		Whole plant	Assessment of salvinia for the removal of color and chemical oxygen demand (COD) from pulp and paper mill effluent	Salvinia plan efficiently removed 49.72% color and 100% COD from the effluent.	Ahmad et al .,2017
		Whole plant	Assessment of S.molesta in treating palm oil mill effluent	S. molesta achieved 95% phosphate removal efficiency from the wastewater it also increased the biomass, which is superior in biochemical content that has its economic value.	Ng et al.,2017
		Not stated	Assessment of S.molesta in removal of heavy metals from industrial effluent.	i) Heavy metals contents (less than 10 ppm) as within the permissible levels, except for chromium and lead. ii) <i>S.molesta</i> can grow healthy with the accumulation of these metals.	Ranjitha <i>et al</i> .,2016
		Root	Assessment of salvinia in heavy metals removal	Salvinia removed 102% of Fe and all the parameters such as BOD, COD, DO, pH, turbidity, oil and greese, nitrate and nitrite were within permissible limits.	Razak <i>et al.</i> , 2013
		Roots	Assessment of <i>S.molesta</i> for heavy metal remediation.	Salvinia could successfully be used for phytoremediation of mining tin tailings	Ashraf et al 2012
		Whole plant	Assessment of <i>S.molesta</i> for heavy metal remediation.	Successfully be used for phytoremediation of mining tin tailings	Ashraf et al., 2011
		Not stated	Assessment of <i>S.molesta</i> for the removal of polar micro contaminants.	Salvinia contributes to the elimination capacity of micro contaminants in wetlands through biodegradation and uptake processes.	Matamoros et al., 2012
		Root	Assessment of <i>S.molesta</i> and their potential as the heavy metals removal in root zone via	Salvinia removed 102% of Fe and the contaminant is successfully absorbed by the root in order to stabilize the industrial wastewater	Abdul and Sulaiman, 2014

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

			phytogreen system.		
2	Wastewater treatment	Whole plant	Assessment of <i>S.molesta</i> to treat textile effluent	Salvinia plant significantly reduce the values of COD, BOD ₅ and ADMI by 76%, 82% and 81% considering initial values 1185, 1440 mg/L and 950 units, respectively.	Chandanshive et al.,2016
		Not stated	Assessment of <i>S.molesta</i> to treat effluents from Nile tilapia culture ponds	S. molesta 72.1% of total phosphorus and 42.7% of total nitrogen indicating that the treated effluents may be reused in the aquaculture activity.	Henry and Camargo, 2006
		Not stated	Assessment of the nutritive value of <i>S. molesta</i> used in a Nile tilapia waste treatment and the species biomass potential uses.	i) Aerial part of salvinia observed 64.2% crude protein, 9.1% soluble carbohydrates, 18.7 mg.g-1 dry mass and lipids 4.5 %. ii) <i>S. molesta</i> aerial biomass have nutritive values with potential use for ruminant feeding or as ration ingredients.	Henry and Monteiro, 2002
		Not stated	Assessment of S.molesta to treat the wastewater	When nutrient concentrations are high, it can be predicted that 5.11 g N m -2 day -1 and 0.85 g P m -2 day -1 can be removed at a water temperature of 25°C, but only 1.1 g N m -2 day -1 and 0.18 g P m -2 day -1 at 12°C. This has a direct bearing on the design and costing of waste-water treatment ponds using salvinia for excess nutrient removal.	Toerien et al.,1983
		Not satated	Assessment of <i>S.molesta</i> for the removal of chromium from tannery effluents by phytoremediation	Salvinia have great potential to remove chromium, which ranges from 36-99% in 10 days.	Mishra et al., 2010
		Root	Assessment of S. molesta to treat the effluent of a giant river prawn	S.molesta wetland suspended total inorganic nitrogen 19.8%, total Kjeldahl nitrogen (TKN) 30.9%, P-orthophosphate (PO4-P) 23.8% and efficient in treating pond effluent due to the root surface which forms an extensive area favorable to retention and adsorption of debris and absorption of nutrients.	Henares et al.,2014
		Leaves	Assessment of <i>S. molesta</i> to treat wastewaters containing zinc(II), and the subsequent conversion of the harvested weed into energy (biogas),	The uptake of zinc by the weed was very efficient - 50% zinc being removed within 15 days and 90% within 30 days of growth. The average gas yield from uncatalyzed salvinia is 30.4 L/kg (fresh weight). The 35-day average yield in presence of zinc (II) works out to be 40.3 L/kg (fresh weight) thus 33% enhancement in yield in the presence of zinc (II).	Abbasi and Nipaney, 1985

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

			Assessment of <i>S.molesta</i> as a potential for the removal of heavy metals in highly polluted water	Salvinia efficiently removed nitrogen, phosphorus and zinc	Finlayson et al.,1984
		Not stated	Assessment of <i>S.molesta</i> for the removal of chromium from wastewater by phytoremediation	Chromium removal from spiked solutions ranged from 40-99% in 7 days.	Shiny et al., 2004
		Not stated	Assessment of <i>S.molesta</i> for the absorption of cadmium from water	Salvinia showed ultrastructural changes at 0.1 ppm andcan be considered as an indicator of Cd in water	Gupta and Devi, 1995
		Not stated	Assessment of <i>S.molesta</i> for the removal of chromium and nickel from wastewater	The rate of percentage removal of metal ions was observed to be 56-96 and 18-72% after the first 2 and 14 days and the nickel and cadmium-enriched solution the biomass growth of Salvinia was high	Srivastav et al.,1994
		Not stated	Assessment of <i>S.molesta</i> for treating aquaculture effluent	i)N and P concentrations were significantly higher (P<0.05) in the inflow (mean of 0.66 mg L-1 and 233.6 mg L-1, respectively) than in the outflow of the tanks (mean of 0.38 mg L-1 and 174.7 mg L-1, respectively) ii)S. <i>molesta</i> , biomass gain was 135.2 and 143.1 g DM.m2, in the higher and lower concentrations, respectively	Henares and Camargo, 2014.
3	Oil absorption	Leaves and hairy roots	Assessment of <i>S.molesta</i> for oil absorption capacity	i) Salvinia are super hydrophobic and super oleophilic, and selectively absorb oil while repelling water. ii) <i>S.molesta</i> improved artificial bioinspired oil absorbents.	Zeiger et al.,2016

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

		Not stated	Assessment of <i>S.molesta</i> for the sorption of oils onto the dry biomass and the results were compared with commercial oil sorbent, peat Sorb, a processed peat.	i)The <i>S.molesta</i> biomass was a better sorbent for oil than Peat Sorb (for a crude oil, 4.8 against 2.7 g of oil sorbed per g of biomass). ii)Main factors that control the sorption process were the hydrophobicity of the biomass, particle size, the chemico-physical composition of the plant and the sorbate, and the capillary suction displayed by the plant biomass	Ribeiro et al.,2000
		Not stated	Assessment of <i>S.molesta</i> for the oil removal and retention capabilities of the biomass sorbents which included kapok fiber, cattail fiber, Salvinia sp.,	i)The mass of oil sorbed for salvnia was greater than 70% i) Oil selectivity (hydrophobic properties) and physical characteristics of the sorbents are the two main factors that influence the oil sorption capability.	Khan et al.,2004
4	Synthesize of nano particle	Leaves	Assessment of <i>S.molesta</i> in synthesis of silver nanoparticles (AgNPs), which is tested for its antimicrobial efficacy	The synthesized AgNPs were found to be an effective antibacterial agent against both gram positive and gram negative bacteria.	Verma et al.,2016
		Whole plant	Assessment of <i>S.molesta</i> in synthesis of gold nanoparticles (AuNPs).	The synthesized AgNPs were found to be stable and used as a bioagent.	Abbasi et al 2016
5	Antioxidant activity	Leaves	Assessment of <i>S.molesta</i> for its antioxidant activity using extracts of aqueous, ethanol, methanol, chloroform, and petroleum ether by the diphenyl-2-picrylhydrazyl assay	i) Among the five different solvents, the maximum antioxidant activity of <i>S. molesta</i> was found in the ethanolic extract 90.3% followed by other solvents ii) <i>S. molesta</i> possess significant antioxidant activity and used as a potent therapeutic agent	Nithya et al.,2016
6	Source of forage	Leaves	Assessment of <i>S.molesta</i> for its potential as a source of feed stuff influencing meat characteristics in ducks	S. molesta can be used as a dietary source of fatty acids for the production of healthy duck meat.	Dwiloka et al., 2015
		Not stated	Assessment of <i>S.molesta</i> and its potential as a source of local duck feed	15% S. molesta to the local duck ration resulted in an increase in the body weight and feed conversion ratio, as well as increasing the income over feed cost by approximately IDR 2,468.65.	Santoso and Setiadi, 2016
		Not stated	Assessment of S.molesta as a feed for the herbivorous fish, tilapia (Oreochromis niloticus Linneus)	After 23 days the fish growth was (7.3 g per fish). Salvinia could be used as a feed supplement or ingredient in tilapia diets.	King et al.,2004
		Leaves	Assessment of <i>S.molesta</i> as a source of forage for ruminants.	Salvinia contain crude ash (17.3% in DM) and of lignin (13.7%) and tannins (0.93%) as a potential feed source for ruminants	Moozhiyil and Pallauf, 1986
7	Antibacterial activity	Leaves	Assessment of S.molesta for itsantibacterial	S. moletsa can be used as complete therapeutic agents since it	Nithyaet al 2015

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

			activity using leaf extract of 20 ml ethanol (75%), acetone, chloroform, aqueous and petroleum ether	possess significant activities ranging from antibacterial to immunomodulator.	
8	Extraction of cytotoxic compounds	Not stated	Assessment of <i>S.molesta</i> for its cytotoxic potential using ethanol extract.	Bioactive compounds from salvinia, particularly salviniol have promising potential in the drug development for cancer.	Li et al., 2013
9	Source of bioactive compound	Leaves	Assessment of <i>S.molesta</i> for its phytochemical potential using extracts of petroleum ether, ethyl acetate, methanol, chloroform, acetone, benzene and water.	S.molesta extracts show the presence of many bioactive compounds after extensive investigation.	Mithraja et al., 2011
11	Lipid extraction	Not stated	Assessment of <i>S.molesta</i> for lipid extraction using methanol:chloroform in 2:1 ratio.	A lipid yield of 92.4% was obtained at the optimized conditions of temperature (85°C), solvent to biomass ratio (20:1), and time (137 min), whereas a predicted lipid yield of 93.5 % with regression model.	Mubarak et al.,2016
12	Determination of heavy metals	Leaves	Assessment of <i>S.molesta</i> for heavy metals accumulation.	i) Heavy metal content (less than 10ppm) was within the permissible levels, except cadmium and lead. ii) <i>S. molesta</i> can grow healthy with the accumulation of these metals and used for the production of biodiesel.	Sandhyasree et al., 2015
		Not stated	Assessment of <i>S.molesta</i> for heavy metals accumulation and tolerance in plants growing on ex-mining area.	The plant species identified could be useful for revegetation and erosion control in metals-contaminated ex-mining sites.	Ashraf et al ., 2010
13	Source of plant harmones	Not stated	Assessment of <i>S.molesta</i> for its mineral content.	Leachate collected on days 7 and 14 had biological activity indicating that auxin-like compounds were released from <i>S. molesta</i> upon decomposition.	Arthur et al., 2007
		Whole plant	Assessment of <i>S.molesta</i> for detecting plant harmones using the soybean callus bioassay	Cytokinin-like activity was detected in the culture medium in which the ferns had been growing and activity co-eluted with the same cytokinins found in the plant material.	Stirk and Van, 2003
14	Removal of heavy metals	Not stated	Assessment of S.molesta for removal of	Salvinia plant showed to possess different affinity for the	Espinoza et al.,2005

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal -

			trace metals in river water under laboratory conditions.	incorporation of the metals in its biomass and metal abatement in dilute wastewaters.	
		Whole plant	Assessment of <i>S. molesta</i> , as green leaf manure in rice (Oryza sativa L.) nursery.	S. molesta obtained grain yield 51.9 g/ha to nursery.	Raju and Gangwar, 2004
15	Isolation of phenolic compound	Whole plant	Assessment of <i>S. molesta</i> to isolated the phenolic compound	i)Two glycosides, 60 -O-(3,4-dihydroxy benzoyl)-b-D-glucopyranosyl ester (1), and 4-O-b-D-glucopyranoside-3-hydroxy methyl benzoate (2), along with five known compounds methyl benzoate (3), hypogallic acid (4), caffeic acid (5), paeoniflorin (6) and pikuroside (7) were isolated for the first time from a fresh water fern <i>S.molesta</i> . ii)These compounds showed a potent antioxidant radical scavenging activity in a non-physiological assay	Choudhary et al.,2008
16	Biofuel	Whole plant	Assessment of <i>S.molesta</i> for biogas production	S.molesta can be successful used as biofuel production	Abbasi and Nipaney, 1984
		Whole plant	Assessment of <i>S.molesta</i> for the production of methane	S.molesta yield energy (methane) of the order of 108 Kcal ha- 1 year- 1.	Abbasi et al.,1990
		Whole plant	Assessment of <i>S.molesta</i> as bioagent for treating wastewaters	i)Salvinia can weed can grow upto 4-5 days in 100 ppm of nickel and cadmium ii)Anaerobic digestion of the weed spiked with low concentrations (1.18 mg L-1) of each of the metals revealed that all metalsenhance biogas yield except chromium, The stimulatory effect followed the trend Cu (51%) >Mo (45%) >Zn (30%) >Hg (24.4%) = Cd (23.8%) > Ni (14%)	Abbasi and Nipaney, 1994.
17	Nanoscale biomimetics	Leaves	Assessment of <i>S.molesta</i> for enhancing air retention	The results indicate that the air-retaining property was greatly enhanced using the salvinia structure	Yang et al.,2013
		Not stated	Assessment of <i>S.molesta</i> for long-term airretention	The complex elastic eggbeater-shaped hairs with a coating of SU-8 photoresist can support a droplet water of 1 ml. This work offered a new simple method to mimic the properties of <i>S.molesta</i> surface.	Tengfei et al.,2016
		Fern hair	Assessment of <i>S.molesta</i> to mimic the air trapping ability	A novel methodology for the fabrication of microstructures mimics the water-pinning and air-trapping ability of <i>S. molesta</i> . Water contact angle, water roll angle and adhesive force of the new microstructure and water fern are study.	Hunt and Bhushan, 2011.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A.

References:

- 1. Abbasi, S. A., Nipaney, P.C., and Soni, R., (1984). Soap solution as an environmentally safe pesticide for household insects a preliminary investigation, *Comparative Physiology and Ecology*, 9 (1), 46-48.
- 2. Abbasi S. A., and Nipany, P. C., (1993). *World's Worst Weed: Impact and Control*. International Book Distributors Dehradun, xi + 226 Pages.
- 3. Abbasi, S. A. and Nipaney, P.C., 1984. Generation of biogas from *Salvinia molesta* (Mitchell) on a commercial biogas digester. Environmental Technology, 5(1-11), pp.75-80.
- 4. Abbasi, S. A. and Nipaney, P.C., 1985. Wastewater treatment using aquatic plants. Survivability and growth of *Salvinia molesta* (Mitchell) over waters treated with zinc (II) and the subsequent utilization of the harvested weeds for energy (biogas) production. Resources and conservation, 12(1), pp.47-55.
- 5. Abbasi, S. A., and Nipaney, P.C., (1994). Potential of aquatic weed *Salvinia molesta* (Mitchell) for water-treatment and energy recovery, *Indian Journal of Chemical Technology*, *1* (4), 204-213.
- 6. Abbasi, S. A., and Nipaney, P.C., (1991). Effect of temperature on biogas production from aquatic fern Salvinia, *Indian Journal of Technology*, 29, 306-309.
- 7. Abbasi, S. A., Nipaney, P. C., and Ramasamy, E. V., (1992). Studies on multiphase anaerobic-digestion of salvinia, *Indian Journal of Technology*, *30* (10), 483-490.
- 8. Abbasi, S. A., Nipaney, P.C., and Schaumberg, G.D., (1990). Bioenergy potential of eight common aquatic weeds, *Biological Wastes*, (*Elsevier*), 34 (4), 359-366.
- 9. Abbasi, S.A., Nipaney, P. C., and Ramasamy, E. V., (1992). Use of aquatic weed salvinia (*Salvinia molesta*, Mitchell) as full partial feed in commercial biogas digesters, *Indian Journal of Technology*, 30 (9), 451-457.
- 10. Abbasi, T., Anuradha, J., Abbasi, S.A., 2016. Utilization of the pernicious aquatic weed salvinia (*Salvina molesta* DS Mitchell) in generating gold nanoparticles.Indian J.Biotechnol.15, 382-391.
- 11. Abdul Syukor bin, A.R., Sulaiman, S.B. Treatment of i{dotless}ndustrial wastewater using Eichornia crassipes, Pistia Stratiotes and Salvinia Molesta in phytogreen system. Energy Education Science and Technology Part A: Energy Science and Research. Volume 32, Issue 1, 2014, Pages 339-346.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 12. Ahmad, J., Abdullah, S.R.S., Hassan, H.A., Rahman, R.A.A., Idris, M., 2017. Screening of tropical native aquatic plants for polishing pulp and paper mill final effluent. *Malaysian J. Analytical Sci.* 21(1), 105-112.
- 13. Ahmed, S., Malik, H., Riaz, M.A., Akthar, M., 2013. Influence of plant extracts on the life history and population development of house fly, *Musca domestica* L. (Diptera: Muscidae). Pak. J. Zool. 45 (2), 345-349.
- 14. Ajitha, B., Reddy, Y.A.K., Reddy, P.S., 2015. Green synthesis and characterization of silver nanoparticles using *Lantana camara* leaf extract. Mater. Sci. Eng. 49, 373-381.
- 15. Ajitha, B., Reddy, Y.A.K., Shameer, S., Rajesh, K.M., Suneetha, Y., Reddy, P.S., 2015. *Lantana camara* leaf extract mediated silver nanoparticles: Antibacterial, green catalyst. J. Photochem. Phot. Biol. 149, 84-92.
- 16. Alvarez-Mercado, J.M., Ibarra-Velarde, F., Alonso-Díaz, M.Á., Vera-Montenegro, Y., Avila-Acevedo, J.G., García-Bores, A.M., 2015. In vitro antihelmintic effect of fifteen tropical plant extracts on excysted flukes of *Fasciola hepatica*. BMC. Vet. Res. 11 (1), 45.
- 17. Amutha, S., 2014. Phytochemical investigation and in vitro evaluation of Lantana camara seed extracts on selected human pathogenic bacteria. Int. J. Pharma. Bio. Sci. 5 (4), B416-B421.
- 18. Anwar, F., Shaheen, N., Shabir, G., Ashraf, M., Alkharfy, K.M., Gilani, A.H., 2013. Variation in Antioxidant Activity and Phenolic and Flavonoid Contents in the Flowers and Leaves of Ghaneri (*Lantana camara* L.) as Affected by Different Extraction Solvents. Int. J. Pharma. 9 (7), 442-453.
- 19. Anwar, M.F., Yadav, D., Kapoor, S., Chander, J., Samim, M., 2015. Comparison of antibacterial activity of Ag nanoparticles synthesized from leaf extract of *Parthenium hystrophorus* in aqueous media and gentamicin sulphate: in-vitro. Drug. Dev. Ind. 41 (1), 43-50.
- 20. Arbiastutie, Y., Marsono, D., Hartati, M.S., Purwanto, R., 2017. The potential of understorey plants from Gunung Gede Pangrango National Park (West Java, Indonesia) as cervixs anticancer agents. J. Biol. Divers. 18 (1), 6.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 21. Arthur, G.D., Stirk, W.A., Novák, O., Hekera, P., Van Staden, J., 2007. Occurrence of nutrients and plant hormones (cytokinins and IAA) in the water fern *Salvina molesta* during growth and composting. *Environmental and experimental botany*, 61(2), 137-144.
- 22. Ashfaq, M., Ali, A., Haider, M.S., Ali, M., Abdullah, M., Mubashar, U., 2014. A role of weed solvents on seed priming of diverse rice germplasm lines. J. Pure. Appl. Microbiol. 8 (3), 2175-2184.
- 23. Ashfaq, M., Ali, A., Siddique, S., Haider, M.S., Ali, M., Hussain, S.B., Khan, A.U.A., 2013. In-vitro antibacterial activity of *Parthenium hysterophorus* against isolated bacterial species from discolored rice grains. Int. J. Agric. Biol, 15 (6), 1119-1125.
- 24. Ashraf, M.A., Maah, M. J., Yusoff, I., 2011. Heavy metals accumulation in plants growing in ex tin mining catchment. *International Journal of Environmental Science & Technology*, 8(2), 401-416.
- 25. Ashraf, M.A., Maah, M.J., Yusoff, I., 2012. Assessment of phytoextraction efficiency of naturally grown plant species at the former tin mining catchment. *Fresenius Environmental Bulletin*, 21(3), 523-533.
- 26. Ashraf, M.A., Maah, M.J., Yusoff, I., Gharibreza, M.M., 2010. Heavy metals accumulation and tolerance in plants growing on ex-mining area, Bestari Jaya, Kuala Selangor, Peninsular Malaysia. In *Environmental Engineering and Applications (ICEEA)*, 2010 International Conference on, 267-271.
- 27. Banerjee, S., Gautam, R.K., Rai, P., Chattopadhyaya, M.C., 2016. Adsorptive removal of toxic dyes from aqueous phase using notorious weed *Lantana camara* as biosorbent. Res. Chem. Int. 42 (6), 5677-5708.
- 28. Begum, S., Ayub, A., Shaheen-Siddiqui, B., Fayyaz, S., Kazi, F., 2015. Nematicidal triterpenoids from *Lantana camara*. Chem. Bio. Divers. 12 (9), 1435-1442.
- 29. Bharadwaja, S.T.P., Singh, S., Moholkar, V.S., 2015. Design and optimization of a sonohybrid process for bioethanol production from *Parthenium hysterophorus*. J. Taiwan. Inst. Chem. 51, 71-78.
- 30. Bhardwaj, P., Singh, A., Agarwal, S., Kalpana, S., 2015. Green Approach to Corrosion Inhibition of Mild Steel in 1 M HCl Solution by Aqueous Extract of *Lantana camara* L. Leaves. Int. J.Chem.Sci. 13 (3) 4-7.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 31. Bhat, M. A., (2016). Wastewater Treatment with a Novel Clean-green Bioreactor SHEFROL[®]. PhD Thesis, Pondicherry University thesis.
- 32. Bhat, M. A., Abbasi, T., Abbasi S. A., (2015). Feasibility of using salvinia (*Salvinia molesta*) as a bioagent for continuous treatment of sewage in SHEFROL® bioreactors, *International Journal of Environmental Science and Engineering Research*, 6(2): 1-4.
- 33. Borah, A.J., Singh, S., Goyal, A., Moholkar, V.S., 2016. An assessment of the potential of invasive weeds as multiple feedstocks for biofuel production. RSC. J. Adv. 6 (52), 47151-47163.
- 34. Chandanshive, V.V., Rane, N.R., Gholave, A.R., Patil, S.M., Jeon, B.H., Govindwar, S.P., 2016. Efficient decolorization and detoxification of textile industry effluent by *Salvina molesta* in lagoon treatment. *Environmental research*, 150, 88-96.
- 35. Chantiratikul, P., Meechai, P. and Nakbanpotec, W., 2009. Antioxidant activities and phenolic contents of extracts from *Salvinia molesta* and Eichornia crassipes. Research Journal of Biological Sciences, 4(10), pp.1113-1117.
- 36. Choudhary, M.I., Naheed, N., Abbaskhan, A., Musharraf, S.G. and Siddiqui, H., 2008. Phenolic and other constituents of fresh water fern *Salvinia molesta*. Phytochemistry, 69(4), pp.1018-1023.
- 37. Damam, M., Moinuddin, M.K., Kausar, R., 2016. Isolation and screening of plant growth promoting actinomycetes from rhizosphere of some forest medicinal plants. Int. J. Chem. Tech. Res. 9 (5), 521-528.
- 38. Deressa, T., Lemessa, F., Wakjira, M., 2015. Antifungal activity of some invasive alien plant leaf extracts against mango (*Mangifera indica*) anthracnose caused by *Colletotrichum gloeosporioides*. Int. J. Pest. Manage. 61 (2), 99-105.
- 39. Dwiloka, B., Setiadi, A., Santoso, S.I., Suprijatna, E., Susanti, S., 2015. Effects of duck feed supplemented with invasive giant salvinia (*Salvina molesta*) on duck meat characteristics. *Turkish Journal of Veterinary and Animal Sciences*, 39(6), 668-675.
- 40. Espinoza-Quinones, F.R., Zacarkim, C.E., Palacio, S.M., Obregon, C.L., Zenatti, D.C., Galante, R.M., Rossi, N., Rossi, F.L., Pereira, I.R.A., Welter, R.A. and Rizzutto, M.A., 2005. Removal of heavy metal from polluted river water using aquatic macrophytes Salvinia sp. Brazilian Journal of Physics, 35(3B), pp.744-746.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 41. Finlayson, C.M., Farrell, T.P. and Griffiths, D.J., 1984. Studies of the hydrobiology of a tropical lake in north-western Queensland. III. Growth, chemical composition and potential for harvesting of the aquatic vegetation. Marine and Freshwater Research, 35(5), pp.525-536.
- 42. Garg, R., Mohana, D.C., Manjunath, K., 2013. In vitro antibacterial activity and phytochemical analysis of some traditional herbs. J. Pharma. Bio. Sci. 4 (1), 994-1003.
- 43. Garza, B.A.A., Arroyo, J.L., González, G.G., González, E.G., Torres, N.W., Aranda, R. S., 2017. Anti-fungal and Anti-Mycobacterial activity of plants of Nuevo Leon, Mexico. Pak. J. Pharm. Sci. 30 (1), 17-21.
- 44. Gautam, R.K., Gautam, P.K., Banerjee, S., Rawat, V., Soni, S., Sharma, S.K., Chattopadhyaya, M.C., 2015. Removal of tartrazine by activated carbon biosorbents of *Lantana camara:* kinetics, equilibrium modeling and spectroscopic analysis. J. Environ. Chem. Eng. 3 (1), 79-88.
- 45. Gautam, R.K., Gautam, P.K., Chattopadhyaya, M.C., Pandey, J.D., 2014. Adsorption of alizarin red s onto biosorbent of *Lantana camara*: kinetic, equilibrium modeling and thermodynamic studies. Proc. Natl. Acad. Sci. India Section A: Phys. Sci. 84 (4), 495-504.
- 46. Girish, C.R., Murty, V.R., 2015. Adsorption of phenol from aqueous solution using *Lantana camara*, forest waste: packed bed studies and prediction of breakthrough curves. Environ. Proc. 2(4), 773-796.
- 47. Girish, C.R., Murty, V.R., 2016. Mass Transfer Studies on Adsorption of Phenol from Wastewater Using *Lantana camara*, Forest Waste. Int. J. Chem. Eng. 5809505.
- 48. Gujjala, L.K., Bandyopadhyay, T.K., Banerjee, R., 2016. Kinetic modelling of laccase mediated delignification of *Lantana camara*. Bioresour. Technol. 212, 47-54.
- 49. Gundamaraju, R., Atigari, D.V., Sheeba, D.S., 2012. Evaluation of anti-obesity activity of *Lantana camara* var Linn on butter induced Hyperlipidemia in Rats. Res. J. Pharmacol. Pharmacodyn. 4 (5), 315-318.
- 50. Gupta, G., Gour, V.S., Sharma, P., Kothari, S.L., 2017. Acid and enzymatic hydrolysis mediated bioethanol production from biomass of a noxious weed-*Parthenium hysterophorus* L. Environ. Prog. Sustain. Energy. 36 (1), 294-296.
- 51. Gupta, M. and Devi, S., 1995. Uptake and toxicity of cadmium in aquatic ferns. Journal of Environmental Biology, 16(2), pp.131-136.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 52. Han, M., Luo, L., Yuan, Z. 2016. Biological Activity of *Lantana camara* L. Leaf Petroleum Ether Extract against the Termite, *Reticulitermes flaviceps* (Oshima) (Isoptera: Rhinotermitidae). Egypt. J. Biol. Pest Co. 26 (4), 683-688.
- 53. Havilah, P.R., Sharma, P.K., Gopinath, M., 2016.Combustion characteristics and kinetic parameter estimation of *Lantana camara* by thermogravimetric analysis. J. Biofuel. Technol.In press, 1-9.
- 54. Henares, M.N.P. and Camargo, A.F.M., 2014. Estimating nitrogen and phosphorus saturation point for Eichhornia crassipes (Mart.) Solms and *Salvinia molesta* Mitchell in mesocosms used to treating aquaculture effluent. Acta Limnologica Brasiliensia, 26(4), pp.420-428.
- 55. Henares, M.N.P. and Camargo, A.F.M., 2014. Treatment efficiency of effluent prawn culture by wetland with floating aquatic macrophytes arranged in series. Brazilian Journal of Biology, 74(4), pp.906-912.
- 56. Hu, G., Zhang, Z., Hu, B., 2013. Allelopathic potential of Parthenium hysterophorus L. extracts on seed germination and seedling growth of two crops. J. Fo. Agric. Environ. 11 (3-4), 1460-1462.
- 57. Hunt, J. and Bhushan, B., 2011. Nanoscale biomimetics studies of *Salvinia molesta* for micropattern fabrication. Journal of colloid and interface science, 363(1), pp.187-192.
- 58. Hussain, N., Abbasi, T., Abbasi, S.A., 2015. Vermicomposting eliminates the toxicity of Lantana (*Lantana camara*) and turns it into a plant friendly organic fertilizer. J. Hazard. Mater. 298, 46-57.
- 59. Inbaraj, S.D., Glory-Josephine, I., Muthiah, N.S., Muniappan, M., Amutha, A., Rahman, F., 2015. Antimicrobial activity of *Lantana camara*. Linn on super bugs: By invitro method. Res.J. Pharm. Biol. Chem. Sci. 6 (6), 602-612.
- 60. Inbaraj, S.D., Menezes, G., Glory Josephine, I., Muniappan, M., Muthiah, N.S., 2014. Antibacterial effect of Lantana camara Linn.on gram negative bacteria and NDM-1 strain: An invitro study. Asian. J. Pharma. Clin.Res.7 (2), 11-14.
- 61. Jhariya, S., Kakkar, A., Pathak, M.K., 2016. Comparatitive study of of root bark and flower of Lantana camara for evaluation of antibacterial activities. Int. J. Pharm. Sci. Rev. Res. 40 (2), 20-23.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 62. Jusselme, M.D., Poly, F., Lebeau, T., Rouland-lefèvre, C., Miambi, E., 2015. Effects of earthworms on the fungal community and microbial activity in root-adhering soil of *Lantana camara* during phytoextraction of lead. Appl. Soil. Ecol. 96, 151-158.
- 63. Karthikeyan, M., Hussain, N., Gajalakshmi, S., Abbasi, S.A., 2014. Effect of vermicast generated from an allelopathic weed lantana (*Lantana camara*) on seed germination, plant growth, and yield of cluster bean (*Cyamopsis tetragonoloba*). Environ. Sci. Pollut. Res. 21 (21), 12539-12548.
- 64. Kazmi, I., Afzal, M., Ali, B., Damanhouri, Z.A., Ahmaol, A., Anwar, F. 2013. Anxiolytic potential of ursolic acid derivative-a stearoyl glucoside isolated from *Lantana camara* L. (Verbanaceae). Asian. Pac. J. Trop. Med. 6 (6), 433-437.
- 65. Khan, E., Virojnagud, W. and Ratpukdi, T., 2004. Use of biomass sorbents for oil removal from gas station runoff. Chemosphere, 57(7), pp.681-689.
- 66. Khan, M., Harun, N., Ab-Rehman, A.H.N., Elhussein, S.A., 2013. In Vitro antioxidant evaluation of extracts of three wild Malaysian plants. Procedia. Eng. 53, 29-36.
- 67. King, C., McIntosh, D. and Fitzsimmons, K., 2004, September. Giant Salvinia (*Salvinia molesta*) as a partial feed for Nile Tilapia (Oreochromis niloticus). In Proc. 6th Int. Symp. Tilapia in Agric (pp. 12-16).
- 68. Knaak, N., Da-Silva, L.D., Andreis, T.F., Fiuza, L.M., 2013. Chemical characterization and anti-fungal activity of plant extracts and essential oils on the *Bipolaris oryzae* and *Gerlachia oryzae* phytopathogens. Australas. Plant. Pathol. 42 (4), 469-475.
- 69. Krishnaveni, M., Kalaivani, M., Banu, C.R., Kumari, G.K., 2015. GC-MS/MS Study of *Parthenium hysterophorus* L stem, Antimicrobial activity. Res. J. Pharm. Technol. 8 (5), 517-519.
- 70. Kuila, A., Banerjee, R., 2014. Simultaneous saccharification and fermentation of enzyme pretreated *Lantana camara* using *S.cerevisiae*. Bioprocess. Biosyst. Eng. 37 (10), 1963-1969.
- 71. Kumari, A., Guliani, A., Singla, R., Yadav, R., Yadav, S.K., 2015. Silver nanoparticles synthesised using plant extracts show strong antibacterial activity. *IET* Nano. Biotech. 9 (3), 142-152.
- 72. Lakra, K.C., Lal, B., Banerjee, T.K., 2017. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology. *International journal of phytoremediation*, 19(6), 530-536.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 73. Layavarjitha, S., Kadamban, D., 2014. Antioxidant activity of leaf, unripe and ripe fruits of *Lantana camara*. Int. J. Pharm. Bio. Sci. 5 (2), 6-11.
- 74. Li, S., Wang, P., Deng, G., Yuan, W., Su, Z., 2013. Cytotoxic compounds from invasive giant salvinia (*Salvina molesta*) against human tumor cells. *Bioorganic & medicinal chemistry letters*, 23(24), 6682-6687.
- 75. Londhe, S., Baheti, D.G., Biroju, B., 2013. Preliminary phytochemical screening and in vitro anthelmintic activity of Lantana camara. Int. J. Pharm. Technol. 5 (2), 5530-5535.
- 76. Macedo, I.T.F., Oliveira, L.M.B.D., Camurça-Vasconcelos, A.L.F., Ribeiro, W.L.C., Santos, J.M.L.D., Morais, S.M.D., Bevilaqua, C.M.L., 2013. In vitro effects of *Coriandrum sativum, Tagetes minuta, Alpinia zerumbet* and *Lantana camara* essential oils on *Haemonchus contortus*. Rev Bras Parasitol Vet. 22(4), 463-469.
- 77. Madkour, M.H., Zaitoun, A.A., Singer, F.A., 2013. Repellent and toxicity of crude plant extracts on saw-toothed grain beetle (*Oryzaephilus surinamensis*). Int. J. Food, Agric. and Environ. 11 (2), 381-384.
- 78. Manjamadha, V.P., Muthukumar, K., 2016. Ultrasound assisted green synthesis of silver nanoparticles using weed plant. Bioprocess. Biosyst. Eng. 39 (3), 401-411.
- 79. Matamoros, V., Nguyen, L.X., Arias, C.A., Salvadó, V., Brix, H., 2012. Evaluation of aquatic plants for removing polar micro contaminants: a microcosm experiment. *Chemosphere*, 88(10), 1257-1264.
- 80. Mavukkandy, M.O., Chakraborty, S., Abbasi, T., Abbasi, S.A. 2016. A Clean-green synthesis of platinum nanoparticles utilizing a pernicious weed Lantana (*Lantana camara*). Am. J. *Engg. & Applied*. Sci. 9, 84-90.
- 81. Mintesnot, B., Ayalew, A., Kebede, A., 2014. Evaluation of biomass of some invasive weed species as substrate for oyster mushroom (Pleurotus spp.) cultivation. Pak. J. Biol. Sci.17 (2), 213-219.
- 82. Mishra, R., Dwivedi, S., Misra, S., 2010. Chromium removal from tannery effluent by phytoremediation. *Pollution Research*, 29, 69-71.
- 83. Mithraja, M.J., Marimuthu, J., Mahesh, M., Paul, Z.M., Jeeva, S., 2011. Phytochemical studies on Azollapinnata R. Br., Marsileaminuta L. and *Salvina molesta Mitch. Asian Pacific Journal of Tropical Biomedicine*, *1*(1), S26-S29.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 84. Mondal, N.K., Chowdhury, A., Dey, U., Mukhopadhya, P., Chatterjee, S., Das, K., Datta, J.K., 2014. Green synthesis of silver nanoparticles and its application for mosquito control. Asian. Pac. J. Trop. Dis. 4, S204-S210.
- 85. Mondal, S., Aikat, K., Halder, G., 2016. Biosorptive uptake of ibuprofen by chemically modified *Parthenium hysterophorus* derived biochar: Equilibrium, kinetics, thermodynamics and modeling. Ecol. Eng. 92, 158-172.
- 86. Mondal, S., Aikat, K., Siddharth, K., Sarkar, K., DasChaudhury, R., Mandal, G., Halder, G., 2017. Optimizing ranitidine hydrochloride uptake of *Parthenium hysterophorus* derived N-biochar through response surface methodology and artificial neural network. Process. Saf. Environ. Prot. 107, 388-401.
- 87. Moozhiyil, M. and Pallauf, J., 1986. Chemical composition of the water fern, *Salvinia molesta*, and its potential as feed source for ruminants. Economic botany, 40(3), pp.375-383.
- 88. Mubarak, M., Shaija, A., Suchithra, T.V., 2016. Optimization of lipid extraction from *Salvina molesta*. *Environmental Science and Pollution Research*, 23(14), 14047-14055.
- 89. Mukherjee, S., Banerjee, S., Basu, P., Saha, G., Aditya, G., 2015. *Lantana camara* and Butterfly Abundance in an Urban Landscape: Benefits for Conservation or Species Invasion. Ekológia (Bratislava), 34(4), 309-328.
- 90. Naqvi, S.A.R., Waseem, R., Mahmood, N., Hussain, Z., Khan, Z.A., Shahzad, S.A., Javed, S., 2013. Phenolic acid content, antioxidant properties, and antibacterial potential of flowers and fruits from selected Pakistani indigenous medicinal plants. Science Asia. 39, 340-345.
- 91. Ng, Y.S., Chan, D.J.C., 2017. Wastewater phytoremediation by *Salvina molesta*. *Journal of Water Process Engineering*, *15*, 107-115.
- 92. Nithya, T.G., Jayanthi, J., Raghunathan, M.G., 2015. Phytochemical, Antibacterial and GC MS analysis of a floating fern *Salvina molesta* DS Mitchell (1972). *International Journal of PharmTech Research*, 8(9), 85-90.
- 93. Pandey, S.K., Bhattacharya, T., Chakraborty, S., 2016. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India. Int. J. Phytoremediation. 18 (1), 87-93.
- 94. Patacsil, M., Manuel, J., Laruan, L.M.V.A., Cortez, S.M., Balangcod, T.D., 2014. Phytochemical and Antimicrobial Studies of Selected Aromatic Plants in the Philippines. International Symposium on Medicinal and Aromatic Plants. 1023, 143-148.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 95. Patil, J., Sharma, M.K., Yadav, S., 2016. Management of reniform nematode, *Rotylenchulus reniformison* cowpea by using botanicals. Indian J. Ecol. 43 (2), 613-614.
- 96. Patil, N.B., Zacharia, S., Kumari, M., 2017. Eco-Friendly Management of Powdery Mildew of Garden Pea (*Pisum sativum* L.). Int. J. Curr. Microbiol. App. Sci. 6(2), 684-689.
- 97. Patro, C., Patro, B., 2015. Evaluation of *Parthenium hysterophorus* L. against *Callosobruchus maculatus* F. in chickpea seeds. J. Ent. Res. 39 (2), 187-190.
- 98. Pavela, R., Benelli, G., 2016. Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors—a review. Exp. Parasitol. 167, 103-108.
- 99. Ponni, G., (2012). Exploratory Studies Towards Development of a Novel SHEFROL (SHEet-Flow ROot-Level) bioreactor, PhD thesis, Pondicherry University, pp 115.
- 100. Pradeep, B.V., Tejaswini, M., Nishal, P., Pardhu, G., Shylaja, S., Kumar, K.C., 2013. Phytochemical screening and antimicrobial activities of plant extract of *Lantana camara*. J. Envrion. Bio. 34 (3), 645.
- 101. Pradhan, S., Borah, A.J., Poddar, M.K., Dikshit, P.K., Rohidas, L., Moholkar, V.S., 2017. Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (*P. hysterophorus*) and aquatic (*E. crassipes*) invasive weeds. Bioresour. Technol. 12-16.
- 102. Priyadharsini, P., Muthukumar, T., 2017. The root endophytic fungus *Curvularia* geniculata from *Parthenium hysterophorus* roots improves plant growth through phosphate solubilization and phytohormone production. Fungal. Ecol. 27, 69-77.
- 103. Priyadharsini, S., Prabhakaran, G., Gokulshankar, S., 2013. Dual skin-care activity of selected herbs. Promising 'do-good' ingredients in skin care formulations. J. Appl. Cosmetol. 31 (3-4), 147-155.
- 104. Rajashekar, Y., Kumar, H.V., Ravindra, K.V., Bakthavatsalam, N., 2013. Isolation and characterization of biofumigant from leaves of *Lantana camara* for control of stored grain insect pests. Ind. Crops. Prod. 51, 224-228.
- 105. Rajashekar, Y., Raghavendra, A., Bakthavatsalam, N., 2014. Acetylcholinesterase inhibition by biofumigant (Coumaran) from leaves of *Lantana camara* in stored grain and household insect pests. Bio.Med. Res. Int. 187019.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 106. Rajiv, P., Rajeshwari, S., Rajendran, V. 2014. Impact of Parthenium weeds on earthworms (*Eudrilus eugeniae*) during vermicomposting. Environ. Sci. Pollut. Res. 21 (21), 12364-12371.
- 107. Rajiv, P., Rajeshwari, S., Venckatesh, R., 2013. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of *Parthenium hysterophorus* L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 112, 384-387.
- 108. Rajiv, P., Rajeshwari, S., Venckatesh, R., 2013. Fourier transform-infrared spectroscopy and Gas chromatography–mass spectroscopy: reliable techniques for analysis of Parthenium mediated vermicompost. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 116, 642-645.
- 109. Raju, R.A. and Gangwar, B., 2004. Utilization of potassium-rich green-leaf manures for rice (Oryza sativa) nursery and their effect on crop productivity. Indian Journal of Agronomy, 49(4), pp.244-247.
- 110. Ramkumar, R., Balasubramani, G., Raja, R.K., Raja, M., Govindan, R., Girija, E.K., Perumal, P., 2017. *Lantana camara* Linn root extract-mediated gold nanoparticles and their in vitro antioxidant and cytotoxic potentials. Artif. Cells. Nanomed. Biotechnol. 1-10.
- 111. Ranjan, A., Kumar, A., Thakur, S., Gulati, K., Shrivastav, C., Jindal, T., 2016. *Lantana camara* as an alternative for biological control of pulse beetle *Callosobruchus maculatus*. Asian. J. Microbiol. Biotechnol. Environ.Sci.18 (2), 535-539.
- 112. Ranjitha, J., Raj, A., Kashyap, R., Vijayalakshmi, S., Donatus, M., 2016. Removal of heavy metals from Industrial Effluent using Salviniamolesta. *International Journal of ChemTech Research*, 9(05), 608-613.
- 113. Rawat, I., Suthar, S., 2014. Composting of tropical toxic weed *Lantana camara* L. biomass and its suitability for agronomic applications. Compost. Sci. Util. 22 (3), 105-115.
- 114. Rehman, B., Ahmad, F., Babalola, O.O., Ganai, M.A., Parihar, K., Siddiqui, M.A., 2013. Usages of botanical extracts for the management of root-knot nematode, Meloidogyne incogenita in chickpea. J. Pure. Appl. Microbio. 7 (3), 2385-2388.
- 115. Remya, M., Vashum, N., Sivasankar, S., 2013. Bioactivity studies on *Lantana camara* linn. Int. J. Pharm. Bio. Sci. 4 (1), 81-90.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 116. Ribeiro, T.H., Smith, R.W. and Rubio, J., 2000. Sorption of Oils by the Nonliving Biomass of a Salvinia sp. Environmental science & technology, 34(24), pp.5201-5205.
- 117. Rochlani, K., Vadakkekara, R., Chakraborty, M., Dasgupta, S., 2016. Antibacterial activity of biostabilized silver nanoparticles. Indian J. Chem. Technol. 23 (6), 520-526.
- 118. Sandhyasree, M., Kruthika, D.L., Priyanka, B., Vijayalakshmi, S.,2015. Ranjitha, J.bMicrowave-assisted digestion for determination of Pb, Mg, Mn, Cd and Zn in *Salvina molesta* by flame atomic absorption spectrometry. International Journal of Pharmaceutical Sciences Review and Research, 32, 95-97.
- 119. Sane, N., Hungund, B., Ayachit, N., 2013. Biosynthesis and characterization of gold nanoparticles using plant extracts. Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), 2013 International Conference. 295-299.
- 120. Santoso, S.I., Setiadi, A., 2016. Profitable Utilization of Giant Salvinia, *Salvina molesta*, as Local Duck Feed. International Journal of Poultry Science, 15(4), 121.
- 121. Shafiq, M., 2016. Management of the *Parthenium hysterophorus* through biochar formation and its application to rice-wheat cultivation in Pakistan. Agric. Ecosyst. Environ. 235, 265-276.
- 122. Sharanappa, R., Vidyasagar, G.M., 2015. Preliminary Screening of Ethnomedicinal Plants for Antifungal Activity. Int. J. Pharm. Bio. Sci. 6 (2), 925-937.
- 123. Sharma, S., Chander, G., Verma, T.S., 2014. Nitrogen dynamics under long term *Lantana camara* (L.) residue and fertilizer application in a rice-wheat cropping system. J. Plant. Nutr. 37(11), 1804-1816.
- 124. Shiny, K.J., Remani, K.N., Jalaja, T.K., Sasidharan, V.K., 2004. Removal of chromium by two aquatic pteridophytes. *Journal of environmental science & engineering*, 46(3), 249-251.
- 125. Shriniwas, P.P., Subash, K.T., 2017. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of *Lantana camara* L. leaves. Biochem. Biophy. Rep.10, 76-81.
- 126. Singh, P.K., Bhardwaj, K., Dubey, P., Prabhune, A., 2015. UV-assisted size sampling and antibacterial screening of *Lantana camara* leaf extract synthesized silver nanoparticles. RSC. Adv. 5 (31), 24513-24520.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 127. Sousa, E.O., Miranda, C.M., Nobre, C.B., Boligon, A.A., Athayde, M.L., Costa, J.G., 2015. Phytochemical analysis and antioxidant activities of *Lantana camara* and *Lantana montevidensis* extracts. Ind. Crops. Prod. 70, 7-15.
- 128. Sousa, E.O., Rocha, J.B., Barros, L.M., Barros, A.R., Costa, J.G. 2013. Phytochemical characterization and in vitro antioxidant properties of *Lantana camara* L. and *Lantana montevidensis* Briq. Ind. Crops. Prod. 43, 517-522.
- 129. Sreekanth, M. (2013). Field evaluation of certain leaf extracts for the control of mussel scale (*Lepidosaphes piperis* Gr.) in black pepper (*Piper nigrum* L.). J. Biopest. 6 (1), 1.
- 130. Srimongkolchai, W., Vichitbandha, P., Pung, T., 2013. Toxic Effects of leaf and flower crude extracts from *Lantana camara* on *Tetranychus urticae*. Asian. J.Chem. 25 (9), 4881.
- 131. Srivastav, R.K., Gupta, S.K., Nigam, K.D.P. and Vasudevan, P., 1994. Treatment of chromium and nickel in wastewater by using aquatic plants. Water Research, 28(7), pp.1631-1638.
- 132. Stirk, W.A. and van Staden, J., 2003. Occurrence of cytokinin-like compounds in two aquatic ferns and their exudates. Environmental and experimental botany, 49(1), pp.77-85.
- 133. Suryati, Santoni, A., Kartika, M.Z., Aziz, H., 2016. Antioxidant activity and total phenolic content of ethyl acetate extract and fractions of *Lantana camara* L.leaf. Der. Pharma. Chemica. 8 (8), 92-96.
- 134. Suthar, S., Sharma, P., 2013. Vermicomposting of toxic weed—*Lantana camara* biomass: chemical and microbial properties changes and assessment of toxicity of end product using seed bioassay. Ecotoxicol. Environ. Saf. 95, 179-187.
- 135. Swamy, M.K., Sinniah, U.R., Akhtar, M.S., 2015. In vitro pharmacological activities and GC-MS analysis of different solvent extracts of *Lantana camara* leaves collected from tropical region of Malaysia. Evid. Based. Complement. Alternat. Med. 506413.
- 136. Tadesse, E., Engidawork, E., Nedi, T., Mengistu, G., 2017. Evaluation of the anti-diarrheal activity of the aqueous stem extract of *Lantana camara* Linn (Verbenaceae) in mice. BMCComplement. Altern. Med. 17 (1), 190.
- 137. Tanvir, R., Sajid, I., Hasnain, S., 2013. Screening for type I polyketide synthases genes of endophytic Streptomycetes isolated from *Parthenium hysterophorus* L. Mol. Genet. Microbiol. Virol. 28 (1), 32-39.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 138. Tanvir, R., Sajid, I., Hasnain, S., 2013. Screening of endophytic Streptomycetes isolated from *Parthenium hysterophorus* L. against nosocomial pathogens. Pak. J. Pharm. Sci. 26 (2), 277-83.
- 139. Tavva, S.M.D., Deshpande, A., Durbha, S.R., Palakollu, V.A.R., Goparaju, A.U., Yechuri, V.R., Muktinutalapati, V.S.R., 2016. Bioethanol production through separate hydrolysis and fermentation of *Parthenium hysterophorus* biomass. Renew. Energy. 86, 1317-1323.
- 140. Tengfei, Z., Chaohui, W., Baogang, M. and Zhuangde, J., 2016. Biomimetics studies of *Salvinia molesta* for fabrication. Micro & Nano Letters, 11(6), pp.291-294.
- 141. Thankamani, C.K., Kandiannan, K., Hamza, S., Saji, K.V., 2016. Effect of mulches on weed suppression and yield of ginger (Zingiber officinale Roscoe). Sci. Hortic. 207, 125-130.
- 142. Toerien, D.F., Cary, P.R., Finlayson, C.M., Mitchell, D.S. and Weerts, P.G.J., 1983. Growth models for Salvinia molesta. Aquatic Botany, 16(2), pp.173-179.
- 143. Udayaprakash, N.K., Bhuvaneswari, S., Sripriya, N., Arulmozhi, R., Kavitha, K., Aravitha, R., Bharathiraja, B., 2014. Studies on phytochemistry, antioxidant, antibacterial, larvicidal and pesticidal activities of aromatic plants from Yelagiri hills. Int. J. Pharm. Pharm. Sci. 6 (2), 325-328.
- 144. Udo, I.A., Osai, E.O., Ukeh, D.A., 2014. Management of Root-Knot Disease on Tomato with Bioformulated *Paecilomyces lilacinus* and Leaf Extract of *Lantana camara*. Braz. Arch. Biol. Technol. 57 (4), 486-492.
- 145. Unnithan, C.R., Shilashi, B., Undrala, G.S., Mulugeta, A., Reddy, D.N., Hintsa, G., Brehanu, A.M., Amhawold, M.M., Subban, R., 2013. Chemical composition and antibacterial activity of essential oil of *Lantana camara*.L of Mekelle, Ethiopia. Int. J. Pharm. Technol. 5 (1), 5129-5135.
- 146. Vaibhav, V., Madhav, M., Srivastav, A.K., Jha, S., Gautam, C.K., Suneetha, V., 2013. Identification of omega 3 fatty acid ester and antimicrobial activity of yellow ornamental lantana flowers. Int. J. Pharm. Sci. Rev. Res. 23 (1), 275-278.
- 147. Valdés, A.F.C., Martínez, J.M., Lizama, R.S., Díaz, L.M., Domínguez, R.L., Llanes, D.M., Cuéllar, A.C., 2016. Anti-plasmodial activity of Parthenium hysterophorus L. lactones and *Argemone mexicana* L. alkaloids in Cuba. Rev. Kuba. Med. Trop. 68 (2), 136-147.

Vol. 6 Issue 1, January 2018, ISSN: 2347-6532 Impact Factor: 6.660

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

- 148. Vasanthi, E.A.P., Nelson, S.J., Muthukrishnan, N., Ramanathan, A., Uma, D., 2016. Antitermitic effect of invasive plants on subterranean termite, *Odontotermes wallonensis* Wasmann. (Termitidae: Isoptera).J. Entomol. Res. 40 (3), 207-212.
- 149. Vemuri, P.K., 2016. Purification and characterization of *Parthenium hysterophorus* flower proteins that exhibit inherent immunological responses. Int. J. Green. Pharm.10, 4.
- 150. Vemuri, P.K., Talluri, B., Sirikonda, V., Padigala, T., Bodiga, V.L., 2016. Haematological and immunomodulatory evaluation of aqueous extract of Parthenium hysterophorus leaves on wistar rats. Der. Pharm. Chem. 8 (19), 441-444.
- 151. Veraplakorn, V., 2016. Micropropagation and callus induction of *Lantana camara* L. a medicinal plant. J. Agri. Nat. Res. 50 (5), 338-344.
- 152. Verma, D.K., Hasan, S.H., Banik, R.M., 2016. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of *Salvina molesta* and its antimicrobial efficacy. *Journal of Photochemistry and Photobiology B: Biology*, 155, 51-59.
- 153. Wan, M., Parashar, R., Kumar, N., Yadav, R.R., Prakash, R., Ngila, J.C., Parashar, V., 2015. Heat transfer biofluids: A novel approach towards weed management. Ecol. Eng.84, 492-495.
- 154. Yadav, A., Garg, V.K., 2016. Vermiconversion of biogas plant slurry and parthenium weed mixture to manure. International J. Rec. Org. Waste. Agri. 5 (4), 301-309.
- 155. Yang, C.Y., Yang, C.Y. and Sung, C.K., 2013. Enhancing air retention by biomimicking Salvinia molesta structures. Japanese Journal of Applied Physics, 52(6S), p.06GF08.
- 156. Zeiger, C., da Silva, I.C.R., Mail, M., Kavalenka, M.N., Barthlott, W., Holscher, H., 2016. Microstructures of superhydrophobic plant leaves-inspiration for efficient oil spill cleanup materials. *Bioinspiration & biomimetics*, 11(5), 056003.
- 157. Zhu, F., Lu, W.H., Pan, J.H., Huang, M.Z., Wu, J.S., 2013. Chemical composition and antibacterial activity of essential oils from the leaves, fruits and stems of *Lantana camara* L. from the South China, Trans Tech Publications. Adv. Mat. Res. 781, 1060-1063.
- 158. Zulqarnain, Z., Rahim, A., Ahmad, K., Ullah, F., Ullah, H., Nishan, U., 2015. Invitro antibacterial activity of selected medicinal plants from lower Himalayas. Pak. J. Pharm.Sci. 28 (2) 5-9.